SFC

A Structured Flow Chart Editor

Version 2.3
User’s Guide

Tia Watts, Ph.D.
Sonoma State University

1 of 35

SFC - A Structured Flow Chart Editor
Version 2.3
User’s Guide

Table of Contents
Lo INEPOAUCTION .ttt et e e it s e st esbeeesabaeas 3
2. Getting Started With SFCc.ooiiiiiiii e 4
3. The SFC ENVITONIMENL. ..cccutiiiiiiiiiiieiiieeeiteeeiee ettt ettt st e st e sseee e s 5
4. Creating a New Structured FIOW Chart...........cccoooiiiiiiiiniiiiiiieeeeceeeee e 7
5. Opening an Existing Structured Flow Chart ..o, 8
6. Inserting a NEeW ProCedUrecccuuiiiiiiiiiiieiiiece e 8
7. Inserting Control STIUCTUIEScovuiiiiiiiiiieeiee ettt 11
a. Sequential Process OF ACHVILY ..ccccuuiiriiieriieeniieeniieeniteeieeeiteeetee st e st esaeeesaneees 12
D, INPUL OF OULPUL ...eoiiiiiiiiiiicee ettt et st 13
C. Subroutine Call.........cocooiiiiiiiiiiieeee e 14
d. SINGIE DECISION ..ottt ettt st e s 15
€. DOUDIE DECISION ..cuuiiiiiiiiiiiieiieetee ettt s 16
£, CaSe SALCIMENL ...ccuuiiiiiiieiiieeiee ettt ettt et e st e st eesaneees 17
L O N @ o] 5 o) 1 B OO OO RUPPR 18
h. Test at the TOP LOOP ...ooiuiiiiiiiee e 19
1. Test at the Bottom LOOP.......oiiiiiiiiiieiieeieeeee e 20
Jo COUNTNG LOOP ..ttt ettt s st 21
k. User Controlled EXit LOOP ...ccccuetiiiiiiniieiiieeieeeieeee ettt 22
8. Inserting DOCUMENTALIONeiiiiiiiiiiiiiitee ettt et e e e e sbeee e 23
9. Modifying Control StIrUCIUIESeevruiiiriiieiiieeniieeiteeete et eree et e st esaeeesieees 24
10. Transforming Control SIIUCTUTESccc.eeiiiriiieriieiieriie ettt e 24
11. Using Cut, Copy, and Paste...........c.coeiiiiiiiiiiiiieeiieeeiieciee ettt 26
12. Printing a Structured FIOW Chartcoooiiiiiiiiiiiiececeeee e 28
13. Viewing and Printing Pseudo Codecoviiiiiiiiiiiiiiiiieeiiecieecee e 28
14. Saving a Structured FIOW Chartccoociiiiiiiiiiiiicccceccece e 29
15. Closing a Structured FIOW Chart VIEWccccueiriiiiiiiiiiiiiieeiieeiee e 30
16. Exporting SVG and TXT fIles ...cocuviiiiiiiiiiiieeeeeceee e 30
17. Editing Multiple Structured FIOW Chartscoocviiviiiiniiiiiiieciieieeeeeeee e 31
18. ExXiting from SFCooiiiii ettt st 31
Appendix A : Flow Chart SYmbOIS........coocuiiiiiiiiiiiiiicteeete e 32
Appendix B 1 EXAMPIESoeiiiiiiiiiiiiieeieee et s 33

Software and Documentation Copyright © Tia Watts 2001

2 of 35

1. Introduction
Program development can be described as a seven step process:

Understand the problem.

Plan the logic of the program.

Code the program using a structured high level computer language.
Using a compiler, translate the program into a machine language.
Test and debug the program.

Put the program into production.

Maintain and enhance the program.

Nk wd =

Planning the logic of the program requires the development of algorithms. An algorithm is a
finite, ordered set of unambiguous steps that terminates with a solution to the problem. Human
readable representations such as flow charts and pseudo code are typically used to describe the
steps of an algorithm and the relationships among the steps.

A flow chart is a graphical representation of the steps and control structures used in an algorithm.
A flow chart does not involve a particular programming language, but rather uses a set of
geometric symbols and flow control lines to describe the algorithm. From a flowchart, a
programmer can produce the high level code required to compile an executable program.

Initially, the standard for describing flow charts only specified the types of shapes and lines used
to produce a flow chart. The introduction of structured programming in the 1960’s and 70’s
brought with it the concept of Structured Flow Charts. In addition to a standard set of symbols,
structured flow charts specify conventions for linking the symbols together into a complete flow
chart.

The structured programming paradigm evolved from the mathematically proven concept that all
problems can be solved using only three types of control structures:

Sequence

Decision (or Selection)

Iterative (or looping).

The definition of structured flow charts used in this document and software further defines:
3 types of sequential structures:
Process, Input/Output, and Subroutine Call
3 types of decision structures
Single Branch, Double Branch, and Case
4 types of iterative structures
Test at the Top, Test at the Bottom, Counting, and User Controlled Exit.

The SFC program is designed to aid the programmer in designing and presenting structured flow

charts. In addition, SFC will automatically generate pseudo code for a flow chart as the flow
chart is being created.

3 of 35

2. Getting Started with SFC
To start the SFC program:
Place the disk containing the SCF program in the A: drive.
From the Start menu, select the Run option.
Enter a:\sfc in the Run dialog box and click on OK or press the enter key.

OR if you have copied the SFC program onto the hard drive (C:) of your computer

From the Start menu, select the Run option.
Enter c:\sfc in the Run dialog box and click on OK or press the enter key.

Once you have started the SFC program, the main window will be displayed:

Using the left mouse button, click on OK to proceed.

You can maximize the size of this window by clicking on the full screen button in the upper right
corner of the window frame.

4 of 35

3. The SFC Environment

Minimize Maximize Exit

Menu Bar E:-_,;-_sh::-[ﬁh::'l]
Eile Edit Wiew ‘Window Help -2 %]
Tool Bar = =
> DEESE X BB 2+ —I_?I
rogriam Mame

@

Program Name -

i

s

Status Bar Read

-

Create Open Save Print Cut Copy Paste Undo Zoom Zoom Help
New Exist- Chart In Out

Flow ing to

Chart Chart Disk

The File menu includes options allowing the user to:

Create a new SFC flow chart document

Open an existing SFC flow chart document

Save the current SFC flow chart document to a file

Save the current SFC flow chart document to a newly named file
Export the current SFC flow chart to an SVG or TXT file

Print the current SFC flow chart or pseudo code view

Preview the print version of the current SFC flow chart or pseudo code view
Set the printing parameters

View and select from a list of recent SFC flow chart documents
Exit from the SFC Editor.

The Edit menu includes options allowing the user to:

Undo the most recent modification made to the current SFC flow chart

Cut the selected control structure or subroutine from the current SFC flow chart

Copy the selected flow chart element from the current SFC flow chart to the clipboard

Copy the selected pseudo code from the current SFC pseudo code view to the clipboard

Paste the flow chart element stored on the clipboard into the selected insertion point in

the current SFC flow chart

e Insert a new flow chart element at the selected insertion point in the current SFC flow
chart

¢ Modify the selected control structure or subroutine in the current SFC flow chart.

e Transform the selected control structure in the current SFC flow chart to another control
structure.

5 of 35

The View menu includes options allowing the user to:

View or hide the Tool Bar

View or hide the Status Bar

Select the Generic style of pseudo code for the current SFC flow chart
Select the C++ style of pseudo code for the current SFC flow chart
Include line numbers in the pseudo code window

The Window menu includes options allowing the user to:

Create a copy of the current SFC flow chart in a new window
Display a cascade of the open SFC flow chart documents

Display a horizontal tiling of the open SFC flow chart documents
View and select from a list of the open SFC flow chart documents.

The Help menu includes options allowing the user to:
e View SFC version information.

The left mouse button is used to select or modify an element in the current SFC flow chart:

¢ Pointing to the symbol associated with a control structure, subroutine, or insertion point
and single clicking the left mouse button will select the element. If the selected element is
a control structure or subroutine, selection will be indicated by a dashed-line rectangle
enclosing the complete structure or subroutine. If the selected element is an insertion
point, selection will be indicated by a dashed-line square enclosing the insertion point.

¢ Pointing to the symbol associated with a control structure, subroutine, or insertion point
and double clicking the left mouse button will allow the user to modify the element. If the
element is a control structure or subroutine, the appropriate text entry dialog box will be
displayed. If the element is an insertion point, the appropriate insertion dialog box will be
displayed.

The left mouse button is also used to select a segment of the current pseudo code.

The right mouse button is used to display pop-up menus:
¢ Pointing to the symbol associated with a control structure or subroutine and clicking the
right mouse button will display a pop-up menu with options to:
o Copy the control structure or subroutine to the clipboard
o Cut the control structure or subroutine and place a copy on the clipboard
o Delete the control structure or subroutine
o Modify the control structure or subroutine
o Transform the control structure
¢ Pointing to an insertion point and clicking the right mouse button will display a pop-up
menu with options to:
o Insert a new control structure or subroutine at the insertion point
o Paste a copy of the appropriate control structure or subroutine on the clipboard at
the insertion point.

6 of 35

4. Creating a New Structured Flow Chart

To create a new structured flow chart:

Click on the word File in the main SFC menu bar.
Select the New option in the file menu.

OR
Click on the blank page icon in the SFC tool bar.

A New Program dialog box will be displayed. Use this dialog box to name the program and
identify yourself as the author.

Program |dentification Information I
Title:
Authar: ’.-’-‘-.uth-:ur

Courseid: |
ok Cancel |

The new flow chart, displayed on the left side of the screen, consists of a procedure called
“main” and two subroutine insertion points (the large shaded circles). The “main” subroutine (a
procedure) is identified by START and STOP labels and contains a single control structure
insertion point (the small shaded circle on the control flow lines between START and STOP).
Read-only pseudo code for the main procedure is displayed on the right side of the screen.

,&} sfc - [SFcl] =l E3
File Edit Yiew ‘wfindow Help = iﬁ'!_}g

D@da|ienl+—[%
{ Program: Sample Program _]

Sample Program ! Author; Author
{ Course:

oid main []

{

Rieady [INUM [

7 of 35

5. Opening an Existing Structured Flow Chart
To open and edit a saved structured flow chart:

Select the Open option in the file menu.
Select or enter the name of the file.
Click on OK or press the enter key.
OR
Click on the open folder icon in the SFC tool bar.
Select or enter the name of the file.
Click on OK or press the enter key.

6. Inserting a New Subroutine (Procedure or Function)

Typically, programs are designed as a set of subroutines, one of which is designated as the
“main” subroutine. When the program is executed, execution begins with the first statement in
the “main” subroutine. The other subroutines in the program are called by the “main” subroutine
and/or by each other.

Subroutines can be divided into two categories: functions and procedures. A function returns a
value to the calling subroutine, a procedure does not. Both functions and procedures can have
information passed to them by the calling subroutine; this is usually done by supplying a list of
actual parameter values when the subroutine is called. The formal descriptions of the parameter
values expected by the subroutine are declared as part of the subroutine.

A new function or procedure can be inserted at a subroutine insertion point (represented by a
large shaded circle). To insert a new function or procedure, double click the left mouse button
while pointing to the subroutine insertion point. A dialog box will be displayed:

Enter Subroutine Information i
Enter procedure or function data

™ Procedurs [Ma returh tupe]

™ Function with retur type!
Funchion returr value:

Procedure or function niame;

Farareter Mame Lzt

|
coreel_|

8 of 35

Inserting a New Procedure

Enter the name of the new procedure and the list of parameter names in the dialog box and then

left click on OK or press the enter key.

Enter Subroutine Information

Enter procedure or function data

% Frocedure (Mo retum tppe}

]|

™' Function with returm type;
Function returm walue:

Frocedure or function name;

lF'rint_S LImmary

Parameter Wame Lizt

iint page_number

Cancel |

Initially the new procedure consists of START and STOP labels and a control structure insertion
point. In addition, when a new procedure is added to a program, subroutine insertion points will

be placed before and after the new procedure.

,}} sfc - [Sicl] [_ |0

Eile Edit Yew Window Help

=8| x|

DsHE =@+ - |7

Sample Program :_j ff Program:
i Author:
! Course:

woid main [
{
it

{
START

Print_Summary I}
firt page_numier]

SToP
Print_Summary
fint page_numkber]

O =i

Feady

=

Sample Program
Author

woid Print Summary [int page_number]

9 of 35

Inserting a New Function

Enter the name of the new procedure and the list of parameter names in the dialog box. In
addition, the value to be returned and its type should be entered in the dialog box before left

clicking on OK or pressing the enter key.

Enter Subroutine Information
Enter procedure or function data

™ Pracedurs [Ma returs type]

]|

" Function with retur ps: Iint
Funchion return walue

Ismaller

Procedure or function name:

!Get_S maller

Farameter Mame Lzt

iint w1, int v

Cancel |

Initially the new function consists of START and STOP labels and a control structure insertion
point. The return value will be indicated in the STOP label. In addition, when a new function is
added to a program, subroutine insertion points will be placed before and after the new function.

e sk - [Scl] Hi=1 E3
FEile Edit Miew Window Help _iﬁlij_(j
DEEHE BB+ - | %
Satmple Program A\ Program: Sample Program =]
o ! Author: Author
Il Course:

woid main []
{
B

{

START
int Get_=maller

(irt w1, int w21
0
return smaller
e =l
Ready

int Get Smaller [int v1. int v2]

return smaller;

10 of 35

7. Inserting Control Structures

Control structures are inserted by double clicking the left mouse button while pointing to a
control structure insertion point. The control structure insertion points are represented as small
shaded circles on the control flow lines of a procedure. On some screens, control structure
insertion point circles may actually appear as small shaded diamonds.

When the left mouse button is double clicked, a control structure insertion dialog box will be
displayed. The type of control structure is determined by left clicking on the appropriate radio
button. After selecting the control structure type, left click on OK or press the enter key. A dialog
box for the selected control structure type will be displayed. After a new control structure is
inserted in a procedure, control structure insertion points will be placed before and after the new
structure. This dialog box will also be used when adding documenting comments to a flow chart.

Insert New Control Structure or Comment i

Sequential Contral Stuctures:

" Sequential Process [fctivit
T |hput or Output. [READ ar'WRITE]

T Call {Procedurs or Function]
Decizion Contral Stuctures:
T Single Decision (IF ... THEM ...]
T Double Decizion [IF ... THEM ... ELSE ..
™ Selection [SELECT .. CASE .}
[terative Cattrol Structures:
" TestatToploop [WHILE - DO)
" Test at Bottorn Loop - [REPEAT .. WHILE .
" Counting Loop [FOR ... MEXT ..
" User Cortrolled Exit Loop [WHILE TRUE _IF]
Diocumentation

" Comment

Caricel |

The following sections describe each of the types of control structures that can be added to the
flow chart.

11 of 35

a. Sequential Processes or Activity

The Sequential Process symbol is used to represent calculations, processes, and other
unambiguous actions.

After selecting the sequential process option of the insert new control structure dialogue box and
left clicking on OK or pressing the Enter key, a dialogue box for entering the contents of the
sequential process symbol will be displayed:

Text Entry Form i

Sequential statements are Lised to perfom
Lnambiguaus actions of expressions,

Enter expression:

Ilet variable V1 =10

Cancel |

After entering the statement associated with the sequential process in the dialog box, left click on
OK or press the Enter key. The new sequential process symbol and its contents will then be
displayed in the flow chart:

,&} sfc - [SFcl] =l E3
File Edit Yiew ‘wfindow Help = iﬁ'!_}fj

DEEHSES s a8 +— | ?

ff Program: Sample Program |

Sample Program !} Author: Author
L] ff Course:
START
migin wvoid main []
I {
let wariable ¥1 = 0;
let wariakle]}
Y1=0
STOP
tmrain
o

ff o

Ready | NUM | 2

12 of 35

b. Input or Output

The Input or Output symbol is used to represent input (read) or output (write) statements.

After selecting the input or output option, a dialogue box for entering the contents of the input

/output symbol will be displayed:

Text Entry Form

Input/Output statements should be uzed to READ
data values orto WRITE result values.

Enter expression:

]|

Ireau:l value inta 1|

Cancel |

After entering the statement associated with the input/output statement in the dialog box, left
click on OK or press the Enter key. The new input/output symbol and its contents will then be

displayed in the flow chart:

,&} gfc - [Sicl] =]

File Edt Yiew wWindow Help

DEEHE $ =83+ - 7

Sample Program

>

read value
irto

werite walue
of W1

Ready

=& x|
/! Program: Sample Program |
! Author: Author
f! Course:

void main]
{
read value into ¥1;
write value of ¥1;

7

| oM

13 of 35

¢. Subroutine Call

The Subroutine Call symbol is used to represent execution of a predefined process or group of

processes. The name of the subroutine and values to be passed to the subroutine should be

enclosed within the subroutine call symbol.

After selecting the subroutine call option, a dialogue box for entering the contents of the
subroutine call symbol will be displayed:

Text Entry Form

4 ztand alone call statenment will activate
execution of a procedures.

Enter procedure name:

]|

|Get_8 maller

Enter list of parameter values:

|value‘| L valuez

Caticel I

After entering the statement associated with the subroutine call statement in the dialog box, left
click on OK or press the Enter key. The new subroutine call symbol and its contents will then be

displayed in the flow chart:

<l sfe - [Sfel] =] E3
File Edit “iew 'wWindow Help _iﬁli_?_(j
DeE&E +B8 +— | %
/f Program: Sample Program =]
Hamgls Rrodtam ! Author: Author
@ ! Course:
START
miain woid main [
4 {
Get Smaller [valuel, value2];
Get_Smaller l}
[waluel,
value)
STOP
@]
] _I_‘

Feady

14 of 35

d. Single Decision

The decision symbol is used to represent a comparison, question, test, selection, or decision that
determines an alternative path to be followed. The single branch decision structure has a control
structure insertion point only on the True (T) branch of the decision symbol. Control structures
placed on the True branch of a single decision structure are only executed if the test enclosed in
the decision symbol is true. If the result of the test is false, the structures on the True branch are
by-passed.

After selecting the single decision option, a dialogue box for entering the contents of the decision
symbol will be displayed:

Dialog i

A zingle branch decizion statement will execite itz
THEM clauze wher the condition is e,

Enter condition:

W1 =10

T T
Select format; . e 0 F

Cancel |

After entering the condition associated with the single branch decision statement in the dialog
box, left click on OK or press the Enter key. The new decision symbol, its condition and a true
branch containing a single structure insertion point will then be displayed in the flow chart:

A sfc - 5fcl |- [Of =]
File: Edit “iew “Window Help

[DEHE sB@a+- 7

B 5tcl
ff Program: Program Name
Reodram e i Author: Author
! Course:

woid main []

if (V1 >= 10)

»

HUM | 7

15 of 35

e. Double Decision

The double branch decision structure has control structure insertion points on both the True (T)
and False (F) branches of the decision symbol. Only one path will be followed after the test
enclosed in the decision symbol is evaluated.

After selecting the double decision option, a dialogue box for entering the contents of the

decision symbol will be displayed:

Text Entry Form

A dual decizioh will execute itz THEM Branch when

itz condition iz friae and itz ELSE branch when falze.

Enter condition:

|v1 »=10

Select format: "

Cancel I

B

After entering the condition associated with the double branch decision statement in the dialog
box, left click on OK or press the Enter key. The new decision symbol, its condition and true and
false branches, each containing a single structure insertion point, will then be displayed in the

flow chart:

,}} sfe - Sfel
File: Edit

Wiew indow Help

=] E3

DEHE s 2@ 9+ — | ?

B8 sfcl

Program hame

!f Program: Program Mame
! Author: Author
! Course:
~oid main]

if [¥1 >=10]

else
t

| NOM |

16 of 35

f. Case Statements

The case, or multi-branch decision, structure has insertion points for case option statements and a
default branch. Only one path will be followed after the statement enclosed in the decision
symbol is evaluated.

After selecting the case statement option, a dialogue box for entering the contents of the case
selection statement will be displayed:

Text Entry Form i

& zelection will execute the appropriate option when it
matches the condition and itz DEFALILT branch ather

Enter gelection condition:

Ivalue of 41

Cancel |

After entering the statement associated with the case statement in the dialog box, left click on
OK or press the Enter key. The new case symbol, its selection statement and case option and
default branches will then be displayed in the flow chart:

e 3fe - [Siel] M= E
File Edit Yiew ‘wfindow Help = iﬁ'!_}fj

DZ2HSES {28 +—|?

ff Program: Sample Program |
AT Yo ! Author: Author
f! Course:

woid main []

{
switch [value of ¥1]
{
1

I

ff o

Ready | NUM | 2

17 of 35

g. Case Options

The double branch decision structure has control structure insertion points on both the True (T)
and False (F) branches of the decision symbol. Only one path will be followed after the test
enclosed in the decision symbol is evaluated.

After double clicking the left button on a case option insertion point, a dialogue box for entering
the contents of the option decision symbol label will be displayed:

Text Entry Form i

Eriter optior label:

|2

Cancel |

After entering the value associated with the case option in the dialog box, left click on OK or
press the Enter key. The new option decision symbol, its value and a path containing a single
structure insertion point, will then be displayed in the flow chart:

,&} sfc - [SFcl] =l E3
File Edit Yiew ‘wfindow Help = iﬁ'!_}fj

DZ2HSES {28 +—|?

ff Program: Sample Program |

Sample Program !} Author: Author
L] ff Course:
void main]
{
switch [value of ¥1]
value of {
o Case 2:
break;
[1
It
STOP
]
] _ _I_I
Ready | NUM | 7

18 of 35

h. Test at the Top Loop

Looping, or iterative, structures are used to represent repetitive actions. The loop control symbol
contains a comparison, question, test, or decision that determines which branch of the loop will
be executed. Initially, the true branch of the loop contains a control structure insertion point.
Control structures inserted on the true branch of the loop comprise the body of the loop. The Test
at the Top Loop performs the test prior to executing the body of the loop. As long as the test
result is true, the body of the loop will continue to be executed. If the result of the test is false,
iterative execution of the body of the loop will be terminated. In some cases, the body of a test at
the top loop may not be executed at all.

After selecting the test at the top loop option, a dialogue box for entering the contents of the loop
decision symbol will be displayed:

Text Entiy Form

A tezt at the top loop will test itz condition and
will iterate az long as the condition = tiue.

Enter condition:

there are ho more values bo read

Select format:

After entering the condition associated with the test at the top looping statement in the dialog box
and selecting the desired format, left click on OK or press the Enter key. The new loop decision
symbol, its contents and a true branch containing a single structure insertion point will then be
displayed in the flow chart:

r'} sfc - Sfcl | (O] x|
File Edit “iew ‘wWindow Help
[DEES % =Ra]+ -2
Eisict =
~| ¥ Program: Program Name
P B =
FagraEiane ! Author: Author

! Course:
rvoid main [J

while [there are no more values to read)

there are
no more values

to read

Feady !_ 'rﬁu- M I o

19 of 35

i. Test at the Bottom Loop

The Test at the Bottom Loop performs the test after executing the body of the loop. As long as
the result of the test is true, the body of the loop will continue to be executed. If the result of the
test is false, iterative execution of the body of the loop will be terminated. The body of a test at
the bottom loop will always be executed at least one time.

After selecting the test at the bottom loop option, a dialogue box for entering the contents of the
loop decision symbol will be displayed:

Text Entry Form

]|

& tezt at the bottom loop will execute the statements in
itz body once and will iterate while the condition is true,

Enter condition;

there are o mare values to read

Select format. % r
|T$F |$F T

Cancel I

After entering the condition associated with the test at the bottom looping statement in the dialog
box, left click on OK or press the Enter key The new loop decision symbol and its contents and a
entry flow line containing a single structure insertion point will then be displayed in the flow

chart:

A sfc - Sfel

File' Edit “iew ‘wWindow Help

DE2H& s2@(a+ - 2

Bsic1

Program Mame

’

there are
no more values

T

Ready

to read

i

! Program:
! Author:
! Course:

woid main]

{
do

Program Mame
Author

while [there are no more values to read);

R

20 of 35

Jj- Counting Loop

The counting loop performs body of the loop once for each desired value of the loop control
variable. When the value of the loop control variable is outside of the indicated bounds, iterative

execution of the body of the loop will be terminated. In some cases, the body of a counting loop
may not be executed at all.

After selecting the counting loop option, a dialogue box for entering the contents of the loop
header symbol will be displayed:

Counting Loop Information i Counting Loop Information i
Loop Teper % |ncreasing © Decreasing Loop Type: (Increasing (% {Decreasing

Loop Control Y arable:

lm Loop Caontral Variable: lm
Starting Y alue; i1 Starting Y alue;
Ending Yalue: I-| 0 Ending Yalue: 1
I‘I

Step Walue Step Walue

11

Cancel | Cancel |

OR

After entering the loop control variable and the desired starting, ending, and step values in the
dialog, left click on OK or press the Enter key. The new loop header symbol, its contents and a
true branch containing a single structure insertion point will then be displayed in the flow chart:

Fo sfe - [Skel] [_TOx] e sfc - [Sicl] [_TOIx]
File Edit Wiew Wirdow Help - =] % __g?_ Edit Wiew ‘Window Help -|&| %]
NDE2HE b6+ — |2 [DEzEES il +— |7

! Program: Sample Program =
rAuthor: Author SN E.f Author: Author

't Course: o f Course:

(8]
main rwoid main [) mein roid main)
g { 3 i
for (¥1 = 1; ¥1 <= 10; ¥1 =¥1 + 1)
W1=1 |v1=v1+1 ! Wl=1 |v1=v1.1
'] +]

W1e=10 W1==10
F £l
o
STOP
main
Q

Ready | INUM | i OR Ready | NUM | e

Sample Program

E.l' Program: Sample Program =

for [¥1 = 1; ¥1 >=10; ¥1 = ¥1-1]

%

21 of 35

k. User Controlled Exit Loop

The User Controlled Exit Loop performs body of the loop until the exit condition is true. As long
as the test result is false, the body of the loop will continue to be executed. In some cases, the
portion of the loop body following the exit test may not be executed at all.

After selecting the user controlled exit loop option, a dialogue box for entering the contents of
the loop decision symbol will be displayed:

Text Entry Form

& User Cantrolled E it loop will loop until an exiting
statement iz executed in the body of the loop,

Enter condition;

at end of input datg

Select fomat;

4
B3

Cancel l

After entering the condition associated with the user looping statement in the dialog box and
selecting the desired format, left click on OK or press the Enter key. The new loop decision
symbol, its contents and a path containing a structures insertion points before and after the exit

condition will then be displayed in the flow chart:

A sfc - [Sfcl] =
File Edit Yiew “Window Help _iﬂljﬂ
DeH&E +a2@d 9+ —- 2
| Program: Program Name =]
Rrgram e ! Author: Author
! Course:

L |

woid main)

while [true]
if [at end of input data]
break;

| NOM |

B

22 of 35

8. Inserting Documentation

Documentation can be added to a flow chart at structure insertion points. Double click on the
insertion point to display the control structure dialog box. After selecting the comment option, a
dialogue box for entering the contents of the comment will be displayed:

Comment Entry Form

Enter comment:

]|

Exit from thiz loop al

Select format

b end of input data

I

[
-l 1
Lo

pe————

: ++
Cancel |

¥ |

[RS—

After entering the comment in the dialog box and selecting the desired format, left click on OK
or press the Enter key. The new comment will then be displayed in the flow chart in a dashed
box to the left or right of the line of flow of the flow chart structure:

e sfc - [Sicl] M= E
Eile Edit Yiew Window Help _iﬁl!_)fj
DEEH&E + 280+ —| 2|
START «| U Program: Program Name]
main i Author: Author
i} Course:

Exit from this
ik loop &t end of
input data

r
1

nat end
of file

void main [

{! Exit from this loop at end of input data
while [not end of file]

Ready

| N[

23 of 35

9. Modifying Control Structures

The contents of a control structure can be modified by double clicking the left mouse button
while pointing to the symbol representing the control structure. The current contents will be
displayed in the appropriate dialog box. After the contents have been modified, click on OK or
press the enter key to save the modification. The modified structure will be displayed in the flow
chart.

10. Transforming Control Structures

The transform option can be used to change the type of a control structure. For example, a single
branch decision structure can be changed to a dual branch decision or a test at the top loop can be
changed to a test at the bottom loop.

To transform a control structure:

Select the structure by left clicking on the symbol representing the structure.
Then:
Select the transform option in the edit menu.
OR
Right click on the structure and select the transform option in the pop-up menu.

Select the desired structure and click on OK.

Single Branch Decision Control Structure
Sequential Control Structures;

" Sequential Process [Activity]

™ |nput or Output. [READ ar'WRITE

" Call [Procedure or Function]

Drecizion Control Structures:

& Double Decision [IF ... THEN . ELSE ..}

true branch true branch

™ Selectior [SELECT ... CASE ...
Iterative Control Stuctures:
" TestatToploop [WHILE .. DO ..
" Test at Bottom Loop [REPEAT ... WHILE ..
™ Usger Controlled Exit Loop . [WHILE TRUE ... IF]
Docurmentation

¢ Comment

Cancel I

The text entry dialog box for the new structure will be displayed so that you may verify the
textual contents of the structure and, if applicable, select a format for the new structure. The new
structure will replace the original structure in the flowchart.

24 of 35

In some cases, flow chart structures will be lost when a transformation is performed. For

example, in the following example, where a double decision structure is transformed into a single
decision structure, the false branch is lost:

true branch

hranch

falze

The following table describes the actions performed when a structure is transformed to a
different structure. (N/A = Not applicable; N/I = Not implemented)

Transform Double Branch Decision Control ..

Seguertial Contral Structures:

" Sequential Process [fctivity)
" Input or Dutput [READ or WRITE]

" Cal [Procedure or Funchion]:

Decizion Control Stiuctures:

& Single Decision (IF ... THEM

" Selection [SELECT .. CASE ..

Iterative Control Structures:

" Testat Toploop [WHILE DO

™ Test at Bottom Loop [REPEAT ;. WHILE ...
™ User Controlled Exit Loop [wHILE TRUE ... IF)

Documentstion

" Commert

Caricel |

|

true branch

From/To Seq. 1/0 Call Single Double | Sel. | Top Bottom | User Count | Com.

Sequential | N/A OK OK OK OK OK | OK OK OK N/1 OK

Input or OK N/A OK OK OK OK | OK OK OK N/I OK

Output

Subroutine | OK OK N/A OK OK OK | OK OK OK N/I OK

Call

Single True True True N/A OK OK | OK OK OK N/I True

Branch branch branch branch lost branch
lost lost lost

Double T/F T/F T/F False N/A OK | False False OK N/ T/F

Branch branches | branches | branches branch branch branch branches
lost lost lost lost lost lost lost

Selection All All All First First/ | N/A | First First First/ | N/I All
branches | branches | branches branch default branch branch default branches
lost lost lost kept kept kept kept kept lost

Test at Top | Loop Loop Loop body | OK OK OK | N/A OK OK N/I Loop
body lost | body lost | lost body lost

Test at Loop Loop Loop body | OK OK OK | OK N/A OK N/I Loop

Bottom body lost | body lost | lost Loop body lost

body lost

User Pre/post | Pre/post | Pre/post Post exit | OK OK | Post exit | Post exit | N/A N/ Pre/post

Controlled | exit body | exit body | exit body | body body body exit body
lost lost lost lost lost lost lost

Counting N/1 N/1 N/I N/I N/1 N/I | N/I N/I N/I N/A | N/

Comment | OK OK OK OK OK OK | OK OK OK N/I N/A

25 of 35

11. Using Cut, Copy, and Paste to Modify Flow Charts

Cut, copy, and paste can be used to remove, move, or duplicate control structures, functions, and

procedures in a flow chart.

To select the control structure, procedure, or insertion point that will be the target of the cut, past
or copy command, point to the structure symbol and click the left mouse button. The current
(selected) component will be outlined with a dashed line box in the flow chart. If the selected
component is a control structure, the text associated with the structure will be highlighted in the

pseudo code.

&1+ sfc - [Sfcl] Hi=E3
File Edit “iew ‘window Help - =] x|
DEEE s =28 +—-|?
e i | it Program: Sample Program -]
i Author: Author
! Course:

r===-=--------- H

woid main [)

{
if [key value is odd]
add key to odd total;
else
add key to even total;

To cut a control structure:

Select the structure by left clicking on the symbol representing the structure.

Then:

Select the cut option in the edit menu.

OR

Click on the scissors icon in the tool bar.

OR

Right click on the structure and select the cut option in the pop-up menu.

26 of 35

The control structure will be removed from the flow chart and placed on the control structure
clipboard.

To copy a control structure:

Select the structure by left clicking on the symbol representing the structure.
Then:
Select the copy option in the edit menu.
OR
Click on the duplicate icon in the tool bar.
OR
Right click on the structure and select the copy option in the pop-up menu.

A copy of the control structure will be placed on the control structure clipboard.
To paste a control structure:

Select an insertion point by left clicking on the small shaded circle representing the control
structure insertion point.
Then:
Select the copy option in the edit menu.
OR
Click on the paste from clipboard icon on the tool bar.
OR
Right click on the insertion point and select the paste option in the pop-up menu.

If a control structure insertion point has been selected, a copy of the control structure most
recently placed on the clipboard by a cut or copy command will be inserted at the selected
control structure insertion point.

If a subroutine insertion point has been selected, a copy of the subroutine most recently placed
on the clipboard by a cut or copy command will be inserted at the selected subroutine insertion
point.

If a case option insertion point has been selected, a copy of the case option most recently placed
on the clipboard by a cut or copy command will be inserted at the selected case option insertion
point.

Copying Flow Chart or Pseudo Code Statements into Other Applications
Segments of a flow chart can be copied and pasted as figures to word processing, drawing,
presentation graphics, and other applications by selecting the segment, using the SFC Edit/Copy

command to copy the graphic to the system clip board and pasting it into the other application.
Similarly, segments of pseudo code can be copied and pasted as text into other applications.

27 of 35

12. Printing a Structured Flow Chart
To preview a printed Structured Flow Chart:
Select the Print Preview option on the File menu.

The printed version of the flow chart will be displayed. Each procedure will be displayed on a
separate page. Each procedure is scaled to fit within the margins of an 8 /2 “ by 11” page.

...................

To print a Structured Flow Chart:
Select the Print option on the File menu.
OR
Click on the printer icon on the tool bar.

13. Viewing and Printing Pseudo Code
Pseudo code will be automatically generated for a Structured Flow Chart as it is being created.
To select the Pseudo Code Style:
Select the C++ Style option on the View menu (default).

OR
Select the Generic Style option on the View menu.

28 of 35

r’} sfc - [3822] HEi=l

r’} sfc - [s522] Hi=

File Edit “iew ‘Window Help _=_]_§’_j_2<_l File Edit View ‘Window Help _=_]_§’_j_§_1
NDEHE $ 2@+ — |7 NEdS s 2R +— |2
! Program: Sample Program = PROGRAM Sample Program =
! Author: Author IBUTHOR Author
! Course: COURSE
void Seq Search () PROCEDURE Seq Search)
{ BEGIN Seq_Search
read target value [TV]; read target value [TV]
let FOUND = no; let FOUND = no
while [walues in list and FOUND = no] SWHILE walues in list and FOUND = no DO
read value from list [LV]
read value from list [LY]; IF T¥ = L¥ THEN |
if [T¥ = LY¥] T let FOUND = yes
let FOUND = yes; END-IF
i END-WHILE
if [FOUND = yes] IF FOUND = ves THEN
write 'Target value found in list.'} write ""Target value found in list."
else ELSE
write "Target value NOT found in list."; write '"Target wvalue NOT found in list."
I} & END-IF &
4] _1_J 4] 5
Ready [NUM | 2 Ready [UM

To preview the printed Pseudo Code:

After left clicking in the pseudo code frame,
Select the Print Preview option on the File menu. The printed version of the pseudo

code will be displayed.

To print the pseudo code:
After left clicking in the pseudo code frame,

OR

Select the Print option on the File menu.

Click on the printer icon on the tool bar.

14. Saving a Structured Flow Chart

A structured flow chart can be saved as a file on a disk.

To save a structured flow chart:

OR

To save a structured flow chart using a different name:

Select the Save option on the File menu.

Click on the disk icon on the tool bar.

Select the SaveAs option on the File menu.

Click on a file name or enter a new name in the dialog box.
Click on the OK button or press the enter key.

29 of 35

15. Closing a Structured Flow Chart View
To close a structure flow chart view window:

Select the Close option on the File menu.
OR
Click on the X button in the upper right corner of the structured flow chart view frame.

16. Exporting SVG and TXT files

The ExportAs option of the File menu can be used to create Scalable Vector Graphics (.svg) or
text (.txt) files.

Scalable Vector Graphics (SVG) is a graphics format designed by Adobe and based on XML.
SVG files can be viewed using the Adobe SVG Viewer. SVG files can be incorporated into web
pages. Since SVG files are text files, they can be modified using a text editor.

To save a structured flow chart as an SVG file:

Select the ExportAs option on the File menu.

Select Scalable Vector Graphic Files (.svg) as the Save as type
Click on a file name or enter a new name in the dialog box.
Click on the OK button or press the enter key.

The pseudo code associated with a flow chart can be exported to a text file for further editing or
compiling. The pseudo code file will be written using the format (Generic or C++) selected from
the View menu.

To save a structured flow chart as a text file:
Select the ExportAs option on the File menu.
Select Text Files (.txt) as the Save as type

Click on a file name or enter a new name in the dialog box.
Click on the OK button or press the enter key.

30 of 35

17. Editing Multiple Structured Flow Charts

Using multiple windows, two ore more flow charts can be edited at the same time. Follow the

instructions in sections 4 or 5 to open a second new or existing flow chart.

To view multiple flow charts one above the other:
Select the Tile option on the windows menu.

= sfc - SeqSearchP
File Edit “iew ‘Window Help

[[0 %]

Ned& i=e+ |2

B SeqSearcht
Sample Program 1
Author

Sample Program 1

o]

START
bool Seq_Search
(T, list)

let FOUMD
=no

bool Seq_Search [TV, list]

let FOUND = no;

i

read value from list [LV];

while [values in list and FOUND = no]

?_ﬁ' SeqSearchP

Sample Program 2
Sample Program 2 2 Author

o]

oid Seq_Search)

read target value [TV];

Ready

let FOUND = no; :
Sl while [values in list and FOUND = na)
() i
:J 4 I a0
[RM

Control structures or procedures cut or copied from one structured flow chart can be pasted to the

appropriate type of insertion point in another flow chart.
18. Exiting from SFC

To exit from SFC:

Left click on the X button on the upper right corner of the SCF main window.

OR
Select the Exit option in the File menu.

31 0f 35

Appendix A : Flow Chart Symbols

Subroutine START/STOP with
Control Structure Insertion Point

Comment (2 formats)

Sequential Process or Activity

v

Input or Output

0

Subroutine Call

Single Branch Decision (2 formats)
T i ; F F i ; T

Double Branch Decision (2 formats)

F

Case Statement with Case Option

|
F
i—? < %
=
T T
F F
Test at Top Loop (4 formats)

Rt

Test at Bottom Loop (2 formats)

Counting Loop

User Controlled Exit Loop (4 formats)

32 of 35

Appendix B : Examples

Example 1 Sequential Search

This example illustrates a procedure implementation of the Sequential Search algorithm. The
flow chart, its Generic style pseudo code, and its C++ style pseudo code are shown.

Flow Chart Generic Style Pseudo Code

START
Seq_Search

[l

PROCEDURE Seq_Search ()
BEGIN Seq_Search
read target value (TV)
let FOUND = no
WHILE values in list and FOUND = no DO
read value from list (LV)
IF TV = LV THEN

read target
value
(T3

let FOUND = yes
iR E END-IF
END-WHILE
{ IF FOUND = yes THEN

write "Target value found in list."
ELSE

write "Target value NOT found in list."
END-TIF

vallues
in list and
FOUMD = no

read value
fram list

END Seqg_Search
L)

C++ Style Pseudo Code

let FOLND

void Seqg_Search ()
= yes

{

read target value (TV);
let FOUND = noj;
while (values in list and FOUND = no)

{

read value from list (LV);
if (TV = LV)
let FOUND = yes;

}
if (FOUND = yes)

write "Target value found in list.";
else

write "Target value NOT found in list.";

write "Target
walue found
inlist."

write "Target
value RIOT
found in list "

STOP
Seq_Search
9]

1 of 35

Example 2 Binary Search

This example illustrates a function implementation of the Binary Search algorithm. The flow

chart, its Generic style pseudo code, and its C++ style pseudo code are shown.

START

hoalean BinarySearch

(integer value,
integers list)

found =
true

found =

falze

%

i

test =

micldle
value in
list

foundd =
Binary=earch
[value, list
values preceding
test)

found =
Binary=earch
[walue, list
values fallowing
test)

%

i

i

STOP

return faund

2 of 35

Generic Style Pseudo Code

FUNCTION BinarySearch (integer value, integers list) RETURNING boolean
BEGIN BinarySearch

IF list contains one value THEN
IF value equal only value in list THEN
found = true
ELSE
found
END-IF
ELSE
test = middle value in list
IF value equal test value THEN
found true
ELSE
IF value less than test value THEN

found = BinarySearch (value, list values preceding test)
ELSE

found
END-IF
END-IF
END-IF
RETURN found
END BinarySearch

false

BinarySearch (value, list values following test)

C++ Style Pseudo Code

boolean BinarySearch (integer value, integers list)
{
if (list contains one value)
{
if (value equal only value in list)
{

found = true;

}

else
found = false;

else

test = middle value in list;
if (value equal test value)
{
found = true;
}
else
if (value less than test value)
{
found = BinarySearch (value, list values preceding test);
}
else

found = BinarySearch (value, list values following test);
}

return found;

2 of 35

