
Sonoma State University

Computer Science Department

CS 460 – Fall 2023 – Watts

Exercise 2
(Due date: Monday, 2 October 2023)

For Exercise 2 Part A, you are to complete and fully test the implementation of the class “money”.

The set of starter files for this exercise are available in a folder called Exercise2 in the course

pickup directory. You should carefully review the contents of these files before you start any

coding.

You should place all of your function implementations for the class in the file money.cpp.

You should also write one or more programs to test your class. The name of each program should

be lastnameE2𝛼.cpp where 𝛼 is a letter between A and Z. (Please use them consecutively.) Each

program should be accompanied by an input file called inputE2𝛼 and an expected output file called

expectedE2𝛼. You may use ChatGPT or other AI agent to generate test programs and test data for

this class. If you do so, you need to indicated that in your README file.

For Exercise 2 Part B, you will be rewriting the program you wrote for Exercise 1 Part B to use

your money class. There will be a few additional modifications to the output.

The name of the program should be Exercise2.cpp. The make file can be used to compile this

program.

Program Input: The first argument on the command line (following the name of the executable) will

be the name of the input file. Each line of the input file contains two monetary amounts: the amount

of the purchase and the amount tendered. All monetary amounts will be in legal monetary input

formats.

Program Output: The second argument on the command line (following the name of the executable)

will be the name of the output file.

To turn in: Create a folder called lastnameE2 to contain all of your source files from Part A and Part

B. You should also include your input and expected output files from Part A, your makefile,

README, and any additional test files you created for part B. Tar and zip your folder to a file

called lastnameE2.tgz and copy it to the course dropbox.

Date Due: Monday, 2 October 2023, 6:59 am.

Problem 2: Change Back

The Problem

Modern grocery stores now often have a ``U-Scan" checkout lane - allowing the customer to scan and check

out their own groceries, without the need of a human checker. These lanes require that change be provided

automatically, after the customer enters his/her cash. You are to write a program that computes the bills and

coins to be dispensed, minimizing the total number of bills and coins. (That is, for change totaling $5.50, you

should not dispense 5 ones and 50 pennies, but a $5 bill and a 50-cent piece.) The bills and coins available

for you to dispense are as follows: $100 bill, $50 bill, $20 bill, $10 bill, $5 bill, $1 bill, 50-cent coin, 25-cent

coin, 10-cent coin, 5-cent coin, 1-cent coin.

Input

The input file will consist of two numbers per line, each constituting a transaction. The first number is the

amount of the purchase, and the second one is the amount tendered by the customer. The format of each

value will be a legal money input format. Input is terminated by the end of the file. The name of the input file

will be provided as a command line argument when the program is executed.

Output

Output will be written to a file. Output for each transaction will be a single line showing the amount of the

purchase, the amount tendered, the amount of change returned and details of the number of bills and coins

that will be dispensed as change, in ascending order of monetary amount. If a bill/coin is not needed in the

change returned, no output is produced for that bill/coin. The output format is illustrated below. The width of

the column labeled “Trans.” is 6; the width of the columns labeled “Purchase”, “Tendered”, and “Change” is

10; and the width of the remaining columns is 5. Transactions without sufficient tender should not be

included in the totals. The name of the output file will be provided as a command line argument when the

program is executed.

Sample Input

42.15 $50

$5.77 5.00

99.99 100.00

142.15 500

2.47 5.00

2.07 $5

99.41 $1000.41

999 1000.00

Corresponding Output

Trans. Purchase Tendered Change 1c 5c 10c 25c 50c $1 $5 $10 $20 $50 $100

 1 $42.15 $50.00 $7.85 1 1 1 2 1

 2 $5.77 $5.00 -$0.77 Insufficient amount tendered

 3 $99.99 $100.00 $0.01 1

 4 $142.15 $500.00 $357.85 1 1 1 2 1 1 3

 5 $2.47 $5.00 $2.53 3 1 2

 6 $2.07 $5.00 $2.93 3 1 1 1 1 2

 7 $99.41 $1000.41 $901.00 1 9

 8 $999.00 $1000.00 $1.00 1

Totals $1387.24 $2660.41 $1273.17 7 1 3 3 4 10 2 1 12

