
Sonoma State University
Computer Science Department
CS 460 – Fall 2023 – Watts

Exercise 2 Prelim 2
(Due date: Monday, 18 September 2023, 3 pm.)

Designing any type of software requires several phases. Our initial phases were the request and
proposal phases. We are now working on the design and analysis phases.

We now have a preliminary design. We need to analyze it for completeness and feasibility.

Please carefully review the preliminary version of the class “money” has which has been posted
in the file ~tiawatts/cs460pickup/money.h (and at the end of this document.)

Some questions:

• Do we need additional constructors?
• Do we need additional operators?
• How do you envision the actions of each operator?
• Do we need addition mutators (getters) and/or accessors (setters)?
• Do we need additional attributes (variables) and/or methods (functions) in the private

section of this class?
• Do you have other ideas regarding the attributes declared in the private section of this

class?
• Do you have questions about the syntax of the method prototypes included in this

interface?
• And others…

You are not expected to implement these functions at this time. However, writing brief pseudo
code is one method of analysis.

Please bring a hard copy of your analysis to our class meeting on Monday. The goal is to
complete the interface for money by the end of the day.

Also, please take a picture (or screenshot) of what you consider to be the most important part of
your analysis document (questions, observations, additions) and upload it to the course dropbox
as lastnameE2.jpg or lastnameE2.png – this is practice for Project 1 Prelim.

#ifndef MONEY_H
#define MONEY_H

#include <iostream>
using namespace std;

class money
{
 public:
 // Constructors
 money ();
 money (const money & M);
 // Destructor
 ~money ();
 // Operators
 // Assignment
 money & operator = (const money & M);
 // Extraction (input)
 friend istream & operator >> (istream & input, money & M);
 // Insertion (output)
 friend ostream & operator << (ostream & output, const money & M);
 // Arithmentic operators
 money operator + (const money & M) const;
 money operator += (const money & M);
 money operator - (const money & M) const;
 money operator -= (const money & M);
 money operator * (const double & F) const;
 money operator *= (const double & F);
 money operator / (const double & F) const;
 money operator /= (const double & F);
 // Logical operators
 bool operator == (const money & M) const;
 bool operator != (const money & M) const;
 bool operator < (const money & M) const;
 bool operator <= (const money & M) const;
 bool operator > (const money & M) const;
 bool operator >= (const money & M) const;
 // Accessors and Mutators
 unsigned getDollars () const;
 unsigned getCents () const;
 void setDollars (unsigned D);
 void setCents (unsigned C);
 unsigned * getCurrency () const;
 void setCurrency (unsigned * C) const;
 unsigned & Dollars ();
 unsigned & Cents ();
 private:
 // Possible attributes
 bool positive;
 unsigned dollars, cents;
 unsigned size; // required
 unsigned * currency; // required
};

#endif

