CS 460

Programming Languages
Fall 2023
Dr. Watts

(28 August 2023)

LARC

Need help with a class? Want to take charge of your learning?

The Learning and Academic Resource Center (LARC) can help with...

Writing Tutoring Subject-Specific Tutoring Academic Success Skills

Brainstorm idegs and get those first e Study for an upcoming midterm Avoiding procrastination
paragraphs written! e Work on challenging assignments Time management

Refine your thesis statement or . S Ski
researchquestion e Develop better study guides tudy Skills

Help with ANY writing task, not just e Gain subject-specific learning skills Setting and achieving goals
English courses

You can find us...

Through the SSU Portal! On our Website! In-Person!
Type
larc.sonoma.edu E- .E LARC is on the 1st

Click on our tile into your browser floor of the Library!

or

to make an Come visit us in

scan this QR code to,

appointment! be automatically S?gs&}zemen
LARC-WC directed to our E n
:) " 9-4 F!
Online website!

= 0000
Xercise 0000
o000
=========== Compiling Exercise 1 for /home/faculty/tiawatts/cs460/Ex1/student1 =========== : ®

========== Ljsting differences for Exercise 1 testrun 1 ==========
========== Lines preceded by < are from your output ==========
========== Lines preceded by > are from the expected output ==========

3c3

<1 $5 bills

> 1 $5 bill
5,7¢5,7

<1 50-cent coins
<1 25-cent coins
<1 10-cent coins
> 1 50-cent coin
> 1 25-cent coin
> 1 10-cent coin
17c17

<1 1-cent coins

> 1 1-cent coin

Course Administration

e Survey

Course website
http://watts.cs.sonoma.edu/cs460f23/

e BASIC e ALGOL °
e FORTRAN e BAL °
e Pascal e SAS °
e COBOL e SPSS °
e BPL e Ada °
e Audit Reporter e LISP °
e RPG e C °
e JCL e Logo o
e SNOBOL e QBasic °
e APL o C++ °

MFC

HTML
Scheme
Java

Action Script
C#

XNA
Objective C
SVG

Python

Why do we study
Programming Languages?

e Choosing languages

e Learning languages

e Efficient program implementation

e Designing and implementing new languages
e EXxpressing ideas

e Overall understanding

Influences on Language
Design

e Architectures
e Domains
e Paradigms

Programming Domains

e Science and e Artificial Intelligence
Mathematics LISP, Scheme
FORTRAN — FORmula ® Systems
TRANSsIlator

Assembly languages, C

o Business e Interactive
COBOL — Common
Business Oriented Java, VB, C#
Language e Web
e Education HTML, XML, CSS, SVG

BASIC — Beginners All-
purpose Symbolic
Instruction Code

Programming Paradigms

e Procedural e Scripting
FORTRAN, COBOL, RPG, Java Script
BASIC, Pascal o Hybrld

e Functional Ct++
LISP, Scheme

e Logical
Prolog

e Object Oriented

Smalltalk, Java

Language Design Factors

e Readability

e Simplicity

e Orthogonality

e Control Structures

e Data Types/Structures
e Writability

e Reliability

e Cost

Influences on Language

Design

Architectures

e Single CPU - single processor

e Single CPU — multiple processors
e Multiple CPUs

Domains

Calculating devices - ForTran
Business applications — COBOL
Al - Lisp

Education - BASIC

Paradigms — way in which programs are written
e Spaghetti code — lots of GOTOs!

e Structured programming — ALGOL
e Procedural Programming

e Object Oriented Programming

e Functional Programming

e GUI/Web Programming

e Parallel Programming

The compilation process

e |[nput — a human readable source program
Text file
Conforms to a specific programming language

e Output — a machine readable target program
A “binary” file
Conforms to a specific machine architecture

Language Translation

System Libraries

Source System
Code Libraries

Translator

Compiling Target
Messages Code

Phases of Compilation

e Lexical analysis

e Syntactical analysis

e Semantic analysis

e Intermediate code generation
e Optimization

e Target code generation

Lexical Analysis

int
2545

.
4

What is a “lexeme”?

e String of characters with a meaning

e Examples?

Key/Reserved words - define display if
User defined identifiers = N value v1 def-ine
Literals -2 12 -12.34 “Hello”

Symbols — operators 2 () " + -

e Defined using regular expressions
e Recognized by the implementation of a DFA

Language Design

e Key (reserved) words (K)
e Symboils (S)
e Literals (L)

e User defined names (U)

C++ User defined names

e Uses?

e Rules?

Use of Underscore (_) in User | ss::
Defined Names

#include <iostream>
using namespace std;

int main ()

{
int _;
float _ ;
string ___ ;
char
bool ;

cout<<_ << << << << <<endl;
return 0;

Regular Expressions

e Alphabet — the symbols that actually appear
In the lexeme

e Special symbols to define the regular
expression
() : grouping
* . 0 or more occurrences of a pattern
* .1 or more occurrences of a pattern
| - indicates alternatives
A : indicates nothing (lambda)

Regular Expression Examples

e Alphabet = {a,b,c}
e Examples

a(b|lc)a—>
a‘*(b|c)a"-->
a(blc)*a—->

abc*ba =2
(alblc|A)((ab®c)|(cb™a))" >

Regular Expression for User
Defined Names

A regular expression for
unsigned integer numeric
literals

A regular expression for
signed integer numeric literals

