
CS 460
Programming Languages

Fall 2023
Dr. Watts

(20 September 2023)

Course Administration

l Exercise 2 posted

l Project 1 Preliminary Exercise

Class money mutators and
accessors (not discussed)

// Accessors and Mutators
unsigned getDollars () const;
unsigned getCents () const;
void setDollars (unsigned D);
void setCents (unsigned C);
unsigned * getCurrency () const;
void setCurrency (unsigned * C) const;
unsigned & Dollars ();
unsigned & Cents ();

class money
class money
{
 public:
 // Methods discussed on Monday

// Accessors and Mutators
int getDollars () const;
int getCents () const;
vector <unsigned> getCurrency () const;
void setCurrency (vector <unsigned> & C);

 private:
// Add attributes private member functions here.
unsigned size; // required
unsigned * currency; // required

};

Project 1 Questions
l I noticed that anything input which matches to

the LISTOP_T category would also
match for the IDKEY_T category. Can we
assume that the order the regular
expressions are listed are also a
"precedence" order, so that it first
checks if "car" matches the LISTOP_T
category?

Project 1 Questions
l If we did go that route, all of the "intermediate"

states in the DFA for the LISTOP_T regular
expression would have to be accepting states
for the IDKEY_T regular expression because
"ca" matches IDKEY_T.
Does this sound correct? Most of what we did
in class only had 1 accepting state per
category and while I know it is valid to have
multiple, I just wanted to confirm that.

Project 1 Questions
l I wanted to confirm that DFAs shouldn't have

any lambda transitions in them correct? as
that wouldn't be "deterministic"?

DFAs as scanners (aka
tokenizers)

l Alphabet = {a, b, c, x, y, z, ⏡ }
l Regular expression 1 (RE1)

l a* (ab | bc) a+
l Regular expression 2 (RE2)

l x+ (xy | yz | xz) z*
l Combined

l (a* (ab | bc) a+) | (x+ (xy | yz | xz) z*)

(a* (ab | bc) a+) | (x+ (xy | yz | xz) z*)

Programming a DFA
l Table

ws a b c x y z other
1 1 2 3 Err1 7 Err1 Err1 Err1
2 Err2 2 4 Err2 Err2 Err2 Err2 Err2
3 Err2 Err2 Err2 5 Err2 Err2 Err2 Err2
4 Err2 6 Err2 5 Err2 Err2 Err2 Err2
5 Err2 6 Err2 Err2 Err2 Err2 Err2 Err2
6 RE1 6 RE1 RE1 RE1 RE1 RE1 RE1
7 Err2 Err2 Err2 Err2 8 9 Err2 Err2
8 Err2 Err2 Err2 Err2 8 10 10 Err2
9 Err2 Err2 Err2 Err2 Err2 Err2 11 Err2

10 RE2 RE2 RE2 RE2 RE2 RE2 11 RE2
11 RE2 RE2 RE2 RE2 RE2 RE2 11 RE2

Regular Expression for
Numeric Literals
l Regular expression for general class of

numeric literals signed/unsigned and
integer/real

l Alphabet = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -, +, .}
l Regular Expression

l How do you recognize the end of a numeric
literal?

DFA for Numeric Literals
(+|-|λ)(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+| λ)

DFA for Numeric Literals
(+|-|λ)(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+| λ)

a. 12
a. 1 -> 3 -> 3 OK!

b. 1.2
a. 1 -> 3 -> 4 -> 5 OK!

c. +12.34
a. 1 -> 2 -> 3 -> 3 -> 4 -> 5 -> 5 OK!

d. 12.
a. 1 -> 3 -> 3 -> 4 -> ends No!

e. .123
a. 1 -> ends No!

f. 12.12.34
a. 1 -> 3 -> 3 -> 4 -> 5 -> 5 see . error

1

2
+|-

#

#

3 4 5

#

#

#

×

DFA for Numeric Literals – with terminating states
(+|-|λ)(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+| λ)

DFA for Numeric Literals – with terminating states
(+|-|λ)(0|1|2|3|4|5|6|7|8|9)+(.(0|1|2|3|4|5|6|7|8|9)+| λ)

l _ à represents a space
l 12 (1 -> 3 ->3 OK!)
l 1.2 (1-> 3 -> 4 -> 5 OK!)
l +12.34 (1 -> 2 -> 3-> 3 -> 4-> 5 -> 5)
l 12. (ends at 4)
l .123 (ends at 1)
l 12.12.34 (stops at 5 OK)

l 12.12

l abcd (ends at -3)
l +abc (ends at -3)
l +_ (ends at -3)
l 4a (ends at -1)

l 4

l 425_ (1 -> 3 -> 3 -> 3 -> ends at -1)
l 4

l -12.345_ (1 -> 2 -> 3 -> 3 -> 4 -> 5 -> 5 -> 5 -> ends at -2)
l -12.345

l What ends up at -1? integer
l What ends up at -2? double
l What ends up at -3? Non-numeric

1

2
+|-

#

#

3 4 5

#

#

#

×

-3

-1 -2

How do the numeric literals for
Project 1 differ from this example?

Next steps

