CS 460

Programming Languages
Fall 2023
Dr. Watts

(20 September 2023)




Course Administration

e Exercise 2 posted

e Project 1 Preliminary Exercise




Class money mutators and
accessors (not discussed)

// Accessors and Mutators

unsigned getDollars () const;

unsigned getCents () const;

void setDollars (unsigned D);

void setCents (unsigned C);

unsigned x getCurrency () const;

void setCurrency (unsigned * C) const;
unsigned & Dollars ();

unsigned & Cents ();



class money

class money

{

public:
// Methods discussed on Monday

// Accessors and Mutators

int getDollars () const;

int getCents () const;

vector <unsigned> getCurrency () const;
void setCurrency (vector <unsigned> & C);

private:
// Add attributes private member functions here.
unsigned size; // required

unsigned * currency; // required

Y



Project 1 Questions

¢ | noticed that anything input which matches to
the LISTOP_T category would also
match for the IDKEY T category. Can we
assume that the order the regular
expressions are listed are also a
"precedence" order, so that it first
checks if "car" matches the LISTOP_T
category?



Project 1 Questions

e |f we did go that route, all of the "intermediate”
states in the DFA for the LISTOP _T regular
expression would have to be accepting states
for the IDKEY T regular expression because
"ca" matches IDKEY T.

Does this sound correct? Most of what we did
In class only had 1 accepting state per
category and while | know it is valid to have
multiple, | just wanted to confirm that.



Project 1 Questions

e | wanted to confirm that DFAs shouldn't have
any lambda transitions in them correct? as
that wouldn't be "deterministic"?



DFAs as scanners (aka
tokenizers)

e Alphabet={a, b, c, X, vy, z,-}
e Regular expression 1 (RE1)
a* (ab | bc) a+
e Regular expression 2 (RE2)
X+ (xy | yz | xz) z*
e Combined
(@" (ab | bc) a+) | (x+ (xy | yz | xz) Z7)




(a* (ab | bc) a+) | (x+ (xy | yz | xz) Z°)




Programming a DFA

e [able

© 00 N O O b WODN -

_ =
= O

WS

Err2
Err2
Err2
Err2
RE1
Err2
Err2
Err2
RE2
RE2

a

2

2
Err2

Err2
Err2
Err2
RE2
RE2

b

3

4
Err2
Err2
Err2
RE1
Err2
Err2
Err2
RE2
RE2

C
Err1
Err2

Err2
RE1
Err2
Err2
Err2
RE2
RE2

Err2
Err2
Err2
Err2
RE1

Err2
RE2
RE2

Err1
Err2
Err2
Err2
Err2
RE1

10
Err2
RE2
RE2

Z
Err1
Err2
Err2
Err2
Err2
RE1
Err2
10
11
11
11

other
Err1
Err2
Err2
Err2
Err2
RE1
Err2
Err2
Err2
RE2
RE2



Regular Expression for

Numeric Literals

e Regular expression for general class of
numeric literals signed/unsigned and
integer/real

e Alphabet={0,1,2,3,4,5,6,7,8,9, -, +,.

e Regular Expression

e How do you recognize the end of a numeric
literal?



DFA for Numeric Literals
(+]-|A)(0]1]2[3]4]5]6]7[8]|9)+(.( 0]1]|2|3]|4|5]|6]7|8]|9)+| A)




DFA for Numeric Literals
(+]-|A)(0]1]2[3]4]5]6]7[8]|9)+(.( 0]1]|2|3]|4|5]|6]7|8]|9)+| A)

a. 12
1->3->30K!
b. 1.2
. 1->3->4->50K!
c. +12.34
1>2->3->3->4->5->50K!
d 12.
. 1->3->3->4->ends No!
e. .123
1 -> ends No!
f. 12.12.34

1->3->3->4->5->5see.error




DFA for Numeric Literals — with terminating states
(+]-IA)(0]1]2]3]4]5]6]7]8]9)+(.( 0]1]2]3|4|5]6]7[8|9)*| A)




DFA for Numeric Literals — with terminating states
(+]-IA)(0]1]2]3]4]5]6]7]8]9)+(.( 0]1]2]3|4|5]6]7[8|9)*| A)

_ > represents a space

12 (1 -> 3 ->3 OK!)

1.2 (1->3->4->50K!)

+12.34 (1->2->3->3->4->5->5)
12. (ends at 4)

123 (ends at 1)

12.12.34 (stops at 5 OK)
12.12

abcd (ends at -3)
+abc (ends at -3)
+ (ends at -3)

4a (ends at -1)

° 4

o 425 (1->3->3->3->endsat-1)
° 4

o -12345 (1->2->3->3->4->5->5->5->ends at-2)

-12.345
e What ends up at -1? integer
e What ends up at -2? double

e What ends up at -3? Non-numeric




How do the numeric literals for
Project 1 differ from this example?




Next steps



