CS 460

Programming Languages
Fall 2021
Dr. Watts

(2 October 2023)

Project 1

e Framework now available

Data Types

e Collection of data values and a set of
predefined operations on those values.

e User-defined - COBOL
e Abstract data types — Smalltalk - ALGOL

e Descriptor
Collection of the attributes of the variable

Amount and format of the memory associated
with a variable

Primitive Data Types

e Numeric Types — binary representations

e Integer
Byte, short, int, long, long long
Unsigned vs. signed
Binary vs. twos compliment

e Floating Point
IEEE format
Sign bit, exponent, fraction
Precision vs. range — trade off
Non-terminating values (eg. 0.1)

Converting Binary to Decimal

o 10100112 —= 10

® 83 1%1+1*2 + 0*4 + 0*8 + 116 + 0*32 + 1*64 = 1+2+16+64 = 83
® PFOCeSSr) Repeated multiplication

Converting Decimal to Binary
e 326,,== 7,

o 326 =256 +64 +4 +2==101000110,?
® PFOCeSSr) Repeated division

What about arithmetic?

1010011, 83
+ 1100110, 102

10111001, => 1857
e 0+0=0

e 1+0 ="~
o 0+1 = -
e 1+1 =10
o 1+1+1 =11

What about Negative
Numbers?

e Sign bit
11010011 => +83
+01010011 => -83

1001001007
1000000007
1001001107

Two’s Compliment

00000001 => 1 vs 11111111 => -1
00101001 +83
11010110 => One’s compliment
+ 1
11010111 -83 => Two’s compliment
00101001 +83

100000000

int storage?

e How many bits? => 32
e 1 bit for the sign
1 => negative and 0 => positive
e 31 for the value
e 231 patterns

o (23)y=>0=>231 0111.....1+1=-(23%)
e for (int1=1;l 1= 0; I++) cout << | << end|;

Other integer types

e short => 8 bits

e int => 16 bits

e long int => 32

e Now all int is 32

e 8 bit integer => signed char

e 8 bit unsigned => unsigned char
e 64 bits => long long

e unsigned int (UINT) O to 232-1

Converting Binary to Decimal

® 10112 — ?10

e 1X05+0x0.25+1x0.125+ 1 x0.0625

e Process?

Practice

® 012 — ?10
® 0012 — ?10

Converting Decimal to Binary

e .37/5,,="7,=>.000375 vs .37500000
e Process?

Practice

® 062510 — ?2
® 0.110 — ?2

IEEE Single Precision (float 32)

The IEEE single precision floating point standard representation requires a 32 bit word, which may be re

resented

as numbered from 0 to 31, left to right. The first bit is the sign bit, S, the next eight bits are the exponent hits, 'E',
and the final 23 bits are the fraction 'F":

S EEEEEEEE FFFFFFFFFFFFFFEFFEFFEEFEEE

0

1

8 9
The value V represented by the word may be determined as follows:

31

° If E=255 and F is nonzero, then V=NaN ("Not a number")

If E=255 and F is zero and S is 1, then V=-Infinity

o
° If E=255 and F is zero and S is 0, then V=Infinity
o

If 0<E<255 then V=(-1)**S * 2 ** (E-127) * (1.F) where "1.F" is intended to represent the binary number
created by prefixing F with an implicit leading 1 and a binary point.

If E=0 and F is zero and S is 1, then V=-0
If E=0 and F is zero and S is 0, then V=0

0

|l oo o+ oor O ORr

In particular,

00000000
00000000
11111111
11111111
11111111
11111111
10000000
10000001
10000001
00000001
00000000

00000000
2** (-149)

00000000000000000000000
00000000000000000000000
00000000000000000000000
00000000000000000000000
00000100000000000000000
00100010001001010101010
00000000000000000000000
10100000000000000000000
10100000000000000000000
00000000000000000000000
10000000000000000000000
00000000000000000000001

If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-126) * (0.F) These are "unnormalized" values.

=0

= +1
(Smallest positive wvalue)

-0

Infinity

-Infinity

NaN

NaN

+1 * 2*%*%(128-127) * 1.0 = 2

+1 * 2*%*%(129-127) * 1.101 = 6.5

-1 * 2**(129-127) * 1.101 = -6.5

+1 * 2*%*%(1-127) * 1.0 = 2**(-126)

+1 * 2*%*%(-126) * 0.1 = 2**(=-127)
* 2*x*(-126) * 0.00000000000000000000001

IEEE Double Precision (float64)

The IEEE double precision floating point standard representation requires a 64
bit word, which may be represented as numbered from 0 to 63, left to right. The
first bit is the sign bit, S, the next eleven bits are the exponent bits, 'E', and the

final 52 bits are the fraction 'F"

S EEEEEEEEEEE FFFFFFFFEFFFFFFFEFFEFFFFFFFEFFFFEFFFFFFFFEFFFFFFFFEFFFEEEE
01 11 12 63

The value V represented by the word may be determined as follows:
If E=2047 and F is nonzero, then V=NaN ("Not a number")

If E=2047 and F is zero and S is 1, then V=-Infinity

If E=2047 and F is zero and S is 0, then V=Infinity

If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where "1.F" is intended to
represent the binary number created by prefixing F with an implicit leading 1 and
a binary point.

If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) These are
"unnormalized” values.

If E=0 and F is zero and S is 1, then V=-0
If E=0 and F is zero and S is O, then V=0

IEEE Quadruple Precision
(float128)

e 1 bit sign
e 15 bit exponent
e 112 bit fraction

Half Precision (float16)

Half precision floating point representation requires a 16 bit word,
which may be represented as numbered from 0 to 15, left to right.
The first bit is the sign bit, S, the next five bits are the exponent bits,

'E', and the final 10 bits are the fraction 'F"
S EEEEE FFFFFFEFFEFFE

01 6 6 15

The value V represented by the word may be determined as follows
Sign

Sign = 0 is positive

Sign = 1 is negative
Exponent

Biased
00000 — 11111

Fraction

Half Precision

e Example: 125.25
e Whole number 125,, == ?,
e Fraction .2510 == 19

Position| O | 1 [2 | 3 | 4| 5|6 |7

10

11

12

13

14

15

Bit
value

