
CS 460
Programming Languages

Fall 2021
Dr. Watts

(2 October 2023)

Project 1
l Framework now available

Data Types
l Collection of data values and a set of

predefined operations on those values.
l User-defined - COBOL
l Abstract data types – Smalltalk - ALGOL
l Descriptor

l Collection of the attributes of the variable
l Amount and format of the memory associated

with a variable

Primitive Data Types
l Numeric Types – binary representations
l Integer

l Byte, short, int, long, long long
l Unsigned vs. signed
l Binary vs. twos compliment

l Floating Point
l IEEE format
l Sign bit, exponent, fraction
l Precision vs. range – trade off
l Non-terminating values (eg. 0.1)

Converting Binary to Decimal

l 10100112 == ?10

l 83 1*1 + 1*2 + 0*4 + 0*8 + 1*16 + 0*32 + 1*64 = 1+2+16+64 = 83

l Process? Repeated multiplication

Converting Decimal to Binary

l 32610 == ?2

l 326 = 256 + 64 + 4 + 2 == 1010001102 ?

l Process? Repeated division

What about arithmetic?
10100112 83

+ 11001102 102

101110012 => 185?
l 0+0 = 0
l 1+0 = 1
l 0+1 = 1
l 1+1 = 10
l 1+1+1 = 11

What about Negative
Numbers?
l Sign bit
 11010011 => +83
 +01010011 => -83

 100100110 => +38 NOT 0!!!!!!!
 100100100?
 100000000?
 100100110?

Two’s Compliment

l 00000001 => 1 vs 11111111 => -1
 00101001 +83
 11010110 => One’s compliment
 + 1
 11010111 -83 => Two’s compliment
 00101001 +83

 100000000

int storage?
l How many bits? => 32
l 1 bit for the sign

l 1 => negative and 0 => positive
l 31 for the value
l 231 patterns
l 000………0 => 0
l 100………0 => -(231)
l -(231) => 0 => 231-1 0111…..1 + 1 = -(231)
l for (int I = 1;I != 0; I++) cout << I << endl;

Other integer types
l short => 8 bits
l int => 16 bits
l long int => 32
l Now all int is 32
l 8 bit integer => signed char
l 8 bit unsigned => unsigned char
l 64 bits => long long
l unsigned int (UINT) 0 to 232-1

Converting Binary to Decimal

l .10112 = ?10

l 1 X 0.5 + 0 x 0.25 + 1 x 0.125 + 1 x 0.0625

l Process?

Practice
l 0.12 = ?10

l 0.012 = ?10

l 0.0110112 = ?10

Converting Decimal to Binary
l .37510 = ?2 => .000375 vs .37500000
l Process?

Practice
l .062510 = ?2

l 0.110 = ?2

l 0.0110 = ?2

IEEE Single Precision (float 32)
l The IEEE single precision floating point standard representation requires a 32 bit word, which may be represented

as numbered from 0 to 31, left to right. The first bit is the sign bit, S, the next eight bits are the exponent bits, 'E',
and the final 23 bits are the fraction 'F':

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
0 1 8 9 31

l The value V represented by the word may be determined as follows:
l If E=255 and F is nonzero, then V=NaN ("Not a number")
l If E=255 and F is zero and S is 1, then V=-Infinity
l If E=255 and F is zero and S is 0, then V=Infinity
l If 0<E<255 then V=(-1)**S * 2 ** (E-127) * (1.F) where "1.F" is intended to represent the binary number

created by prefixing F with an implicit leading 1 and a binary point.
l If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-126) * (0.F) These are "unnormalized" values.
l If E=0 and F is zero and S is 1, then V=-0
l If E=0 and F is zero and S is 0, then V=0

l In particular,
l 0 00000000 00000000000000000000000 = 0
l 1 00000000 00000000000000000000000 = -0
l 0 11111111 00000000000000000000000 = Infinity
l 1 11111111 00000000000000000000000 = -Infinity
l 0 11111111 00000100000000000000000 = NaN
l 1 11111111 00100010001001010101010 = NaN
l 0 10000000 00000000000000000000000 = +1 * 2**(128-127) * 1.0 = 2
l 0 10000001 10100000000000000000000 = +1 * 2**(129-127) * 1.101 = 6.5
l 1 10000001 10100000000000000000000 = -1 * 2**(129-127) * 1.101 = -6.5
l 0 00000001 00000000000000000000000 = +1 * 2**(1-127) * 1.0 = 2**(-126)
l 0 00000000 10000000000000000000000 = +1 * 2**(-126) * 0.1 = 2**(-127)
l 0 00000000 00000000000000000000001 = +1 * 2**(-126) * 0.00000000000000000000001

= 2**(-149) (Smallest positive value)

IEEE Double Precision (float64)
l The IEEE double precision floating point standard representation requires a 64

bit word, which may be represented as numbered from 0 to 63, left to right. The
first bit is the sign bit, S, the next eleven bits are the exponent bits, 'E', and the
final 52 bits are the fraction 'F':

S EEEEEEEEEEE FF
0 1 11 12 63

l The value V represented by the word may be determined as follows:
l If E=2047 and F is nonzero, then V=NaN ("Not a number")
l If E=2047 and F is zero and S is 1, then V=-Infinity
l If E=2047 and F is zero and S is 0, then V=Infinity
l If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where "1.F" is intended to

represent the binary number created by prefixing F with an implicit leading 1 and
a binary point.

l If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) These are
"unnormalized" values.

l If E=0 and F is zero and S is 1, then V=-0
l If E=0 and F is zero and S is 0, then V=0

IEEE Quadruple Precision
(float128)
l 1 bit sign
l 15 bit exponent
l 112 bit fraction

Half Precision (float16)
l Half precision floating point representation requires a 16 bit word,

which may be represented as numbered from 0 to 15, left to right.
The first bit is the sign bit, S, the next five bits are the exponent bits,
'E', and the final 10 bits are the fraction 'F':

S EEEEE FFFFFFFFFF
0 1 6 6 15

l The value V represented by the word may be determined as follows
l Sign

l Sign = 0 is positive
l Sign = 1 is negative

l Exponent
l Biased
l 00000 – 11111

l Fraction

Half Precision
l Example: 125.25

l Whole number 12510 == ?2
l Fraction .2510 == ?2

