
CS 460
Programming Languages

Fall 2021
Dr. Watts

(9 October 2023)

Exercise 2
l Will be revisiting this as

Exercise 5
l Issues

l Testing
l C++ input protocols

l Preliminary Exercise
l Will be posted soon – not

due for quite a while.

Project 1
l Questions? (By email or on paper)

Project 1
l Regarding the white leading whitespaces in

the .lst files before the line number.
Does our output .lst file have to match the
format exactly? Did you use \t to tab it or
what width is that set to?

l .lst files do not need to match.
l .p1 files need to match. (White space not

important.)

Project 1
l How should the .lst and and.p1 files look

for an input such as:
 .-123.43 12/.5 ./

IEEE Single Precision (float 32)
l The IEEE single precision floating point standard representation requires a 32 bit word, which may be represented

as numbered from 0 to 31, left to right. The first bit is the sign bit, S, the next eight bits are the exponent bits, 'E',
and the final 23 bits are the fraction 'F':

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
0 1 8 9 31

l The value V represented by the word may be determined as follows:
l If E=255 and F is nonzero, then V=NaN ("Not a number")
l If E=255 and F is zero and S is 1, then V=-Infinity
l If E=255 and F is zero and S is 0, then V=Infinity
l If 0<E<255 then V=(-1)**S * 2 ** (E-127) * (1.F) where "1.F" is intended to represent the binary number

created by prefixing F with an implicit leading 1 and a binary point.
l If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-126) * (0.F) These are "unnormalized" values.
l If E=0 and F is zero and S is 1, then V=-0
l If E=0 and F is zero and S is 0, then V=0

l In particular,
l 0 00000000 00000000000000000000000 = 0
l 1 00000000 00000000000000000000000 = -0
l 0 11111111 00000000000000000000000 = Infinity
l 1 11111111 00000000000000000000000 = -Infinity
l 0 11111111 00000100000000000000000 = NaN
l 1 11111111 00100010001001010101010 = NaN
l 0 10000000 00000000000000000000000 = +1 * 2**(128-127) * 1.0 = 2
l 0 10000001 10100000000000000000000 = +1 * 2**(129-127) * 1.101 = 6.5
l 1 10000001 10100000000000000000000 = -1 * 2**(129-127) * 1.101 = -6.5
l 0 00000001 00000000000000000000000 = +1 * 2**(1-127) * 1.0 = 2**(-126)
l 0 00000000 10000000000000000000000 = +1 * 2**(-126) * 0.1 = 2**(-127)
l 0 00000000 00000000000000000000001 = +1 * 2**(-126) * 0.00000000000000000000001

= 2**(-149) (Smallest positive value)

IEEE Double Precision (float64)
l The IEEE double precision floating point standard representation requires a 64

bit word, which may be represented as numbered from 0 to 63, left to right. The
first bit is the sign bit, S, the next eleven bits are the exponent bits, 'E', and the
final 52 bits are the fraction 'F':

S EEEEEEEEEEE FF
0 1 11 12 63

l The value V represented by the word may be determined as follows:
l If E=2047 and F is nonzero, then V=NaN ("Not a number")
l If E=2047 and F is zero and S is 1, then V=-Infinity
l If E=2047 and F is zero and S is 0, then V=Infinity
l If 0<E<2047 then V=(-1)**S * 2 ** (E-1023) * (1.F) where "1.F" is intended to

represent the binary number created by prefixing F with an implicit leading 1 and
a binary point.

l If E=0 and F is nonzero, then V=(-1)**S * 2 ** (-1022) * (0.F) These are
"unnormalized" values.

l If E=0 and F is zero and S is 1, then V=-0
l If E=0 and F is zero and S is 0, then V=0

IEEE Quadruple Precision
(float128)
l 1 bit sign
l 15 bit exponent
l 112 bit fraction

Half Precision (float16)
l Half precision floating point representation requires a 16 bit word,

which may be represented as numbered from 0 to 15, left to right.
The first bit is the sign bit, S, the next five bits are the exponent bits,
'E', and the final 10 bits are the fraction 'F':

S EEEEE FFFFFFFFFF
0 1 5 6 15

l The value V represented by the word may be determined as follows
l Sign

l Sign = 0 is positive
l Sign = 1 is negative

l Exponent
l Biased (15)
l 00000 – 11111

l Fraction

Half Precision Example 1
l Example: 125.25

l Whole number 12510 == ?2
l Fraction .2510 == ?2

Half Precision Example 2
l Example: 123000.0

l Whole number 12300010 == ?2
l Fraction .010 == ?2

Half Precision Example 3
l Example: 0.21875

l Whole number 010 == ?2
l Fraction .2187510 == ?2

Half Precision Example 4
l Example: 5.20

l Whole number 510 == ?2
l Fraction .2010 == ?2

Half Precision Example 5
l Example: 12.20

l Whole number 1210 == ?2
l Fraction .2010 == ?2

Half Precision Example 6
l Example: 25.20

l Whole number 2510 == ?2
l Fraction .2010 == ?2

Half Precision Example 7
l Example: 37.20

l Whole number 3710 == ?2
l Fraction .2010 == ?2

Let’s go the other way!

 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

Let’s go the other way!

 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 1

Some Half-precision values

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

int main ()
{
 float value = 0;
 do
 {
 cout << "Please enter a floating point value (0 to quit): ";
 cin >> value;
 cout << " value: " << fixed << showpoint << setprecision (30)
 << value << endl;
 float rounded = (round (value * 100)) / 100.0;
 cout << "rounded: " << fixed << showpoint << setprecision (30)
 << rounded << endl;
 } while (value != 0);
 return 0;
}

Other Numeric Types
l Arbitrary precision
l Fraction type
l User defined types

String types
l C style strings
l C++ strings

Composite Data Types
l Array
l Struct
l Class
l Union

