CS 460

Programming Languages
Fall 2021
Dr. Watts

(23 October 2023)




Assignments

e Project 1
Submission script closed
New results sent this morning
e EXxercise 2

Script running so that your groups can improve
their testing techniques

e Exercise 3
Posted — let me know if you see typos
Part 1 due next week

e Project 2
Coming soon




What is Syntactic Analysis?

e Also known as Parsing

e Determining if the order of the tokens generated for
the lexemes of the input are in a legal order
according to some grammar

e Creation of a parse tree
Explicit or implicit
e Errorrecovery

When an error is detected, the parser must get back to a
normal state and continue analysis of the input

e Basis for translation



VS Semantic Analysis

e The meaning of the expressions, statements
and program units.

e Static semantics
At compile time

e Dynamic semantics
At run time

e Attribute grammars
e Denotational semantics



Describing Syntax

Language is a set of strings of characters from some
alphabet.

The strings of a language are called sentences or
statements.

Smallest units of the statements are words or
lexemes.

Syntax rules of a language describe what words are
in the language and how they should be ordered.

Natural languages (such as English) have a
complex and extensive set of syntactcal rules.

Programming languages have a relatively simple set
of syntactical rules.



BNF

e Set of terminal symbols (T)
e Set of non-terminal symbols (N)
e Start symbol (S € N)

e Set of production rules (P)

<non-terminal> - string of terminal and <non-
terminal> symbols

<non-terminal> ::= string of terminal and <non-
terminal> symbols



Simple BNF Grammar

e T = {ONE, TWO, THREE, FOUR}
e NT = {<number>, <single>, <double>, <triple>}
e S = <number>
o P={
<number> ::= <single> <double> <triple>
<single> ::= ONE | TWO | THREE | FOUR
<double> ::= <single> <single>
<triple> ::= <single> <double>
<triple> ::= <double> <single>




Taunt Generator Grammar
(with thanks to Monty Python and the Insulting Frenchman)

< taunt > ::= < sentence > | < taunt > < sentence > | < noun >!
< sentence > ::= < past-rel > < noun-phrase >

| < present-rel > < noun-phrase >

| < past-rel > < article > < noun >
< noun-phrase > ::= < article > < modified-noun >
< modified-noun > ::= < noun > | < modifier > < noun >
< modifier > ::= < adjective > | < adverb > < adjective >
< present-rel > ::= your < present-person > < present-verb >
< past-rel > ::= your < past-person > < past-verb >
< present-person > ::= steed | king | first-born
< past-person > ::= mother | father | grandmother | grandfather | godfather
< noun > ::= hamster | coconut | duck | newt | peril | chicken | vole | parrot
| mouse | twit | elderberry
< present-verb > ::=is | “masquerades as”
< past-verb > ::= was | personified | “smelt of”
< article > ::=a
< adjective > ::= silly | wicked | sordid | naughty | repulsive | malodorous
| ill-tempered
< adverb > ::= conspicuously | categorically | positively | cruelly
| incontrovertibly



Each team

e Use the grammar to generate 3 taunts
<= 5 words
> 5 and <= 10 words
> 10 words

e Submit the taunts in a file called Team#.txt



Context Free Grammars and
Backus-Naur Form

e Context Free Grammar (CFG) — order of
syntactical elements is important — meaning is
not.

e Meaning is determined by context semantics.

e Backus-Naur Form (BNF)
ALGOL 58
John Backus — 1959
Peter Naur — 1960

e BNF is a natural notation for describing syntax



BNF Grammar (Example 1)

T={=AB,C, + % (,)}

N = {<assign>, <id>, <expr>}
S = <assign>

P={

<assign> - <id> = <expr>
<id>>A|B|C

<expr> > <id> + <expr>
<id> * <expr>
( <expr>)
<id>




Derivation of A=B + (C * A)

<assign>

=> <id> = <expr>

=> A = <expr>

=> A = <id> + <expr>

=>A =B + <expr>

=>A=B + ( <expr>)
( <id>* <expr>)
(C * <expr>)

=>A=B+(C*<id>)
(C*A)




Parse tree forA=B + (C * A)

<assi gn>
<id> = <expr>
A <id> +

<expr>
( <opr> )
<id> * <expr>

C <id>

A




BNF Grammar (Example 2)

e T={=AB,C,+ % ()}

e N = {<assign>, <id>, <expr>}
e S = <assign>

o P=/{

<assign> - <id> = <expr>

<id>>A|B|C

<expr> - <expr> + <expr>
<expr>* <expr>
( <expr>)
<id>

}

e DerivationforA=B+C*A?




One Possible Derivation

<assign>

=> <id> = <expr>

=> A = <expr> + <expr>

=> A = <id> + <expr>

=>A =B + <expr>

=> A =B + <expr> * <expr>
=>A =B + <id> * <expr>
=>A=B+ C * <expr>
=>A=B+C *<id>
=>A=B+C*A




The Other Possible Derivation

<assign>

==> <|d> = <expr>

==> A = <expr>

==> A = <expr> * <expr>

==> A = <expr> + <expr>* <expr>
==> A = <id> + <expr> * <expr>
==>A =B + <expr> * <expr>
==>A =B + <id> * <expr>
==>A=B + C * <expr>
==>A=B+C * <id>
==>A=B+C*A




Example 2
Parse Trees forA=B+C*A |::

<assign> <assign>
/‘\ /‘\
<id> = <expr> <id> = <expr>
| T | T
A <expr> <expr> A <expr> <expr>
<expr> <expr= <id <id> <expr> 4  <expr>
. L |
<i<L> <id> A B <id> <id>
| | | |
B C A

e Ambiguous



BNF Grammar (Example 3)

e T={=A,B,C, + % (,)}

e N = {<assign>, <id>, <expr>, <term>, <factor>}

e S = <assign>

o P={
<assign> - <id> = <expr>
<id>->A|B|C
<expr> 2> <expr> + <term> | <term>
<term> - <term> * <factor> | <factor>
<factor> - ( <expr>) | <id>

}

e ParsetreeforA=B+C*A?



Example 3
Parse TreeforA=B+C*A

<assign>
/‘\
<id> = <expr>
‘ /’\
A <expr> T <term>
/[\
<term <term> . <factor>
|
<factor <factor <id>
|
id <id> A
B C

e Operator precedence




Parsing

e Top Down
Recursive Descent

_L Parsing — Left to right scan of the input;
_eftmost derivation

e Bottom Up
Shift Reduce

LR Parsing — Left to right scan of the input;
Rightmost derivation



LL(1) Grammar for a Small 434

Programming Language

T ={begin, end, ;, =, A, B, C, +, "}
N = {<program>, <stmt_list>, <stmt>, <var>,

<stmt_tail>, <expression>, <expr_tail>}

Start = <program>

© ® N o gk~ w0 DN =~

[ N -
NS

——

<program> - begin <stmt_list> end
<stmt_list> 2 <stmt> <stmt_tail>
<stmt_tail> =; <stmt_list>
<stmt_tail> > A

<stmt> - <var> = <expression>
<var> > A

<var>-> B

<var>-> C

<expression> - <var><expr_tail>
<expr_tail> = + <var><expr_tail>
<expr_tail> 2> * <var><expr_tail>
<expr_tail> > A

Example 1:
begin
A=B +C;
C=A*B
end
Example 2:
begin
A=B+A*C;
C=A"B;
end



Parsing of Example 1

From main parsing routine, call <program> function
From <program>, match begin; call <stmt_list> function
From <stmt_list>, see A call <stmt> function
From <stmt>, see A call <var> function
From <var>, match A; return
From <stmt>, match =; see B call <expression> function
From <expression>, see B call <var> function
From <var>, match B; return
From <expression>, see + call <expr_tail> function
From <expr_tail>, match +; see C call <var> function
From <var>, match C; return
From <expr _tail>, see ; call <expr_tail>
From <expr_tail>, see ; return
From <expr_tail>, return
From <expression>, return

From <program>, match end; return
From main parsing routine, print error count and terminate



Recursive Descent Parser for a
Small Programming Language

1) <program> - begin <stmt_list> end

program ()
{
if (current token == begin)
{ // rule 1
get next token;
call stmt list;
if (current token == end)
get next token;

else
call erro:_routine;

}

else
call erro:_routine;

return;




Recursive Descent Parser for a
Small Programming Language

2) <stmt_list> = <stmt> <stmt_tail>

stmt list ()
{ // rule 2
call stmt;
call stmt tail;

return;




Recursive Descent Parser for a
Small Programming Language

3) <stmt_tail> >; <stmt_list>
4) <stmt_tail> 2> A

stmt_ tail ()
{
if (current token == ;)
{ // rule 3
get next token;
call stmt list;
}
else if (current token == end)
{ // rule 4
}
else
call error routine;
return;




Recursive Descent Parser for a
Small Programming Language

5) <stmt> - <var> = <expression>

stmt ()
{ // rule 5
call var;
if (current token == =
{
get next token;
call expression;
}
else
call error routine;
return;




Recursive Descent Parser for a
Small Programming Language

6) <var> > A
7)<var> > B
8) <var>—>C

var ()
{ // rule 5
if (current_ token == A)
{ // rule 6
get next token;
}
else if (current_ token == B)
{ // rule 7
get next token;
}
else if (current_ token == C)
{ // rule 8
get next token;
}
else
call error routine;
return;




Recursive Descent Parser for a
Small Programming Language

9) <expression> = <var><expr_tail>

expression ()
{ // rule 9
call var;
call expr tail;

return;




Recursive Descent Parser for a
Small Programming Language

10) <expr_tail> > + <var><expr_tail>
11) <expr_tail> = * <var><expr_tail>
12) <expr_tail> > A

expr tail ()
{
if (current token == +)
{ // rule 10
get next token;
call var;
call expr tail;

else if (current token == ¥*)
{ // rule 11
get next token;
call vaf7
call expr tail;
}
else if (current token == ; or current token == end)
{ // rule 12
}

else
call error_ routine;

return;




Context Free Grammar
Definition

e Given a Context Free Grammar of the form:
Terminals = {T,,T,, Ts,...}
Non-terminals = {<nt;>, <nt,><nt3>,...}
A Start symbol from the set of non-terminals
A set of Production rules of the form

<nt> - string of T and <nt> symbols



First and Follow Sets

e Firsts

A terminal symbol T, is a member of the First Set
of non-terminal symbol <nt> if T, can become the
first terminal symbol in a complete expansion of
<n{>.

e Follows

A terminal symbol T; is a member of the Follow
Set of non-terminal symbol <nt> if T; can become
the first terminal symbol immediately following a
complete expansion of <nt;>.



