
CS 460
Programming Languages

Fall 2023
Dr. Watts

(6 November 2023)

Assignments
l Exercise 2

l Script running so that your groups can improve
their testing techniques

l Exercise 3
l Posted – let me know if you see typos
l Part 2 – comment out last function call
 ;; (main)

Project 2
l Spec and Framework posted
l Extra Credit

l PL460 program that uses all 93 grammar rules
l Thursday, 16 November 2023, 6:59 am
l Draw from Exercise 3

l Suggestions
l Create First and Follow sets
l Start with sets for the “Short Grammar”
l Add in the remaining grammar rules
l Testing

First and Follow Sets
l Firsts

l A terminal symbol Ti is a member of the First Set
of non-terminal symbol <ntj> if Ti can become the
first terminal symbol in a complete expansion of
<ntj>.

l Follows
l A terminal symbol Ti is a member of the Follow

Set of non-terminal symbol <ntj> if Ti can become
the first terminal symbol immediately following a
complete expansion of <ntj>.

Why do we need the First and
Follow Sets?
l Making decisions!

15. <non_terminal_10> à T21 …
16. <non_terminal_10> à T22 …
17. <non_terminal_10> à
 <non_terminal_11> …
18. <non_terminal_11> à T24 …

l Error Recovery

void non_terminal_10 ()
{
 if (current_token == T21)
 { // Use rule 15
 }
 else if (current_token == T22)
 { // Use rule 16
 }
 else if (current_token == T24)
 { // Use rule 17
 }
 else
 // No applicable rule
 call error_routine;
 return;
}

Parse Table

T BEGIN END SEMI EQUAL A B C PLUS MULT

<nt> -TOK -TOK -TOK -TOK -TOK -TOK -TOK -TOK -TOK
<program> 1 Error Error Error Error Error Error Error Error

<stmt_list> 2 2 2

<stmt_tail> 4 3

<stmt> 5 5 5
<var> 6 7 8
<expr> 9 9 9
<expr_tail> 12 12 10 11

First and Follow Sets
First Set Follow Set

<program> BEGIN_TOK (1)

<stmt_list> A_TOK (2), B_TOK (2), C_TOK(2) END_TOK

<stmt_tail> SEMI_TOK (3), END_TOK (4) END_TOK

<stmt> A_TOK (5), B_TOK (5), C_TOK (5) END_TOK, SEMI_TOK

<var> A_TOK (6), B_TOK (7), C_TOK (8) END_TOK, SEMI_TOK, EQUAL_TOK,
PLUS_TOK, MULT_TOK

<expr> A_TOK (9), B_TOK (9), C_TOK (9) END_TOK, SEMI_TOK

<expr_tail> PLUS_TOK (10), MULT_TOK (11),
END_TOK (12), SEMI_TOK (12)

END_TOK, SEMI_TOK

Short Project Grammar
Character Sets
α = upper or lower alphabetic characters
η = digits 0 to 9
Θ = all typeable characters

Lexeme Regular Expression
define | (|) | α(α|η|_)* | (+|-|λ)(η+ | η*.η+ | η+.η* | η+/η+) | "Θ*"
| #f | #t | display | newline

T = {DEFINE_T, LPAREN_T, RPAREN_T, IDENT_T, NUMLIT_T, STRLIT_T,
FALSE_T, TRUE_T, DISPLAY_T, NEWLINE_T, EOF_T};

NT = {<program>, <more_defines>, <define>, <stmt_list>, <stmt>, <literal>,
<logical_lit>, <param_list>, <action >}

S = <program>

Short Project Grammar
P = {

1. <program> -> LPAREN_T <define> LPAREN_T <more_defines> EOF_T
2. <more_defines> -> <define> LPAREN_T <more_defines>
3. <more_defines> -> IDENT_T <stmt_list> RPAREN_T
4. <define> -> DEFINE_T LPAREN_T IDENT_T <param_list> RPAREN_T <stmt> <stmt_list>

RPAREN_T
5. <stmt_list> -> <stmt> <stmt_list>
6. <stmt_list> -> λ
7. <stmt> -> <literal>
8. <stmt> -> IDENT_T
9. <stmt> -> LPAREN_T <action> RPAREN_T
10. <literal> -> NUMLIT_T
11. <literal> -> STRLIT_T
12. <literal> -> <logical_lit>
13. <logical_lit> -> TRUE_T
14. <logical_lit> -> FALSE_T
15. <param_list> -> IDENT_T <param_list>
16. <param_list> -> λ
17. <action> -> IDENT_T <stmt_list>
18. <action> -> DISPLAY_T <stmt>
19. <action> -> NEWLINE_T

}

Short Grammar Program

Calculating First and Follow
Sets – Procedure A
l For each rule of the form

a. <nti> à Tk …
b. Tk is included in the first set of <nti>

l Which rules in the short grammar include the pattern
needed for Procedure A?

Calculating First and Follow
Sets – Procedure B
l For each rule of the form

a. <nti> à <ntj> …
b. if Tk is a member of the first set of <ntj> then Tk is

included in the first set of <nti>

l Which rules in the short grammar include the pattern
needed for Procedure B?

Calculating First and Follow
Sets – Procedure C
l For each rule of the form

a. <nti> à λ
b. if Tk is a member of the follow set of <nti> then Tk is

included in the first set of <nti>

l Which rules in the short grammar include the pattern
needed for Procedure C?

Calculating First and Follow
Sets – Procedure D
l For each rule of the form

a. < > à … <nti> Tk …
b. Tk is included in the follow set of <nti>

l Which rules in the short grammar include the pattern
needed for Procedure D?

Calculating First and Follow
Sets – Procedure E
l For each rule of the form

a. < > à … <nti> <ntj> …
b. if Tk is a member of the first set of <ntj> then Tk is

included in the follow set of <nti>

l Which rules in the short grammar include the pattern
needed for Procedure E?

Calculating First and Follow
Sets – Procedure F
l For each rule of the form

a. <nti> à … <ntj>
b. if Tk is a member of the follow set of <nti> then Tk is

included in the follow set of <ntj>

l Which rules in the short grammar include the pattern
needed for Procedure F?

Subprogram Terminology
l A subprogram definition describes the interface to and the actions of the

subprogram abstraction.
l A subprogram call is the explicit request that a specific subprogram be executed.
l A subprogram is said to be active if, after having been called, it has begun

execution but has not yet completed that execution.
l Two fundamental kinds of subprograms: procedures and functions.
l A subprogram header, which is the first part of the definition,

l specifies that the following syntactic unit is a subprogram definition of some
particular kind.

l provides a name for the subprogram.
l may specify a list of parameters.

l The parameter profile of a subprogram contains the number, order, and types of
its formal parameters.

l The protocol of a subprogram is its parameter profile plus, if it is a function, its
return type.

l Formal parameters are defined in the subprogram header.
l Actual parameters are provided in the subprogram call.

Procedures vs Functions
l Procedures do not have return values
l Procedures change the calling environment

via call by reference and modification of
shared variables (side effects)

l Functions have return values
l Functions should not create side effects
l Many languages use a hybrid approach

Local Referencing
Environments
l Stack Frames
l Local variables
l Parameter passing methods

l Pass by value
l Pass by reference
l Constant pass by reference
l Pass by name
l Implementing passing methods

Examples

Recursion in PL460
l Rules of Recursion - Determine

l the unit of work
l the base case (how to make it stop)
l the external call (how to make it start)
l the internal call(s) (how to keep it going)

l PL460 Examples

Recursive display example
(define (tailRec value)
 (display value) (display " ")
 (if (> value 1)
 (tailRec (/ value 2))
)

)

(define (headRec value)
 (if (> value 1)
 (headRec (/ value 2))
)
 (display value) (display " ")

)

(define (main)
 (display "(tailRec 32) --> ")
 (tailRec 32)
 (newline)
 (display "(headRec 32) --> ")
 (headRec 32)
 (newline)

)

(main)

