CS 460

Programming Languages
Fall 2023
Dr. Watts

(15 November 2023)




Assignments

e EXxercise 2

Script running so that your groups can
Improve their testing techniques

e Exercise 3

Your secret folder now contains the .dbg, .Ist,

.p1, and .p2 files for your lastnameE3.pl460
submission

e Exercise 4
txt file due Wednesday, 2:30 pm
We will discuss this in class




Project 2

e Spec and Framework posted

e Extra Credit

PL460 program that uses all 93 grammar rules
Thursday, 16 November 2023, 6:59 am

Draw from Exercise 3
e Suggestions
Create First and Follow sets

Start with sets for the “Short Grammar”
Add in the remaining grammar rules

Testing




Exercise 4 Preliminary

e Why?




Expressions and Assignment
Statements (Chapter 7)

e Arithmetic Expressions

e Overloaded Operators

e Type Conversions

e Relational and Boolean Expressions
e Short-Circuit Evaluation

e Assignment Statements

e Mixed-Mode Assignment




Arithmetic Expressions

e Operators

e Operator Evaluation Order
Precedence
Commutativity
Associativity
Parenthesis
Conditional Expressions

Operand Evaluation Order
Side Effects




Overloaded Operators — Ex 5

e money operator + (const money & M) const;

e money operator += (const money & M);

e money operator - (const money & M) const;

e money operator —-= (const money & M);

e money operator x (const double & F) const;

e friend money operator *x (const double & Factor, const money & M);
e money operator x= (const double & Factor);

e money operator / (const double & Divisor) const;

e money operator /= (const double & Divisor);

e money operator % (const int & Divisor) const;

e money operator %= (const int & Divisor);

e money operator ++ (); // Pre increment
e money operator ++ (int); // Post increment
e money operator — (); // Pre decrement

e money operator —— (int); // Post decrement
e bool operator == (const money & M) const;
e bool operator != (const money & M) const;
e bool operator < (const money & M) const;

e bool operator <= (const money & M) const;
e bool operator > (const money & M) const;

e bool operator >= (const money & M) const;




Overloaded Operators — Ex 5

e friend istream & >> (istream & ins, money & M);

e friend ostream & << (ostream & outs, const money & M);




Overloaded Operators —Ex5 |:

e How do these differ?

e money operator x (const double & F) const;
o friend money operator x (const double & Factor, const money & M);

e money operator *= (const double & Factor);



Overloaded Operators — Ex 5

e How do these differ?

money operator ++ (); // Pre increment

money operator ++ (int); // Post increment

money operator —— (); // Pre decrement

money operator —— (int); // Post decrement




