
CS 460
Programming Languages

Fall 2023
Dr. Watts

(27 November 2023)

Assignments
l Exercise 2

l Script running so that your groups can
improve their testing techniques

l Exercise 4
l Spec now posted
l Script is running

l Exercise 5 spec and framework posted
l New money.h file includes

l New friend function
l In cents; // recommended

l Doxygen website generation

Project 2
l Executed with 24 test input program

l 14 without errors
l 10 with errors

l Executed with the test input programs you
submitted.

l All results are in your “secret” folder.

The Appearance of a Program
l Required formatting

l Line contents requirements
l Python
l Fortran
l C/C++
l PL460

l Use of white space
l Python

l Commenting
l Single line
l Blocks

l Standard styles
l Work place standards

Project 3
l PL460 to C++
l Code generation
l Spec and Framework posted
l Project3Framework contains

makefile Project3.cpp
CodeGenerator.cpp CodeGenerator.h
LexicalAnalyzer.h LexicalAnalyzer.o
SyntacticalAnalyzerP2.cpp SyntacticalAnalyzerP2.h
Object.h Object.o
README.txt P3Test1.pl460
run1

Project 3
l Project 2 Syntactic Analyzer will make calls to

Code Generator to write to .cpp file
l Look at the grammar

l Insertion of calls to CodeGenerator
l Where?

l Driven by grammar
l Calls to WriteCode in SyntaxAnalyzer

l What strings should be written?

Project 3
l Sample PL460 program

(define (main)
0

)
(main)

l Corresponding C++ program

Project 3
4. <define> -> DEFINE_T LPAREN_T IDENT_T [1]
<param_list> RPAREN_T [2] <stmt> <stmt_list> RPAREN_T
[3]

[1] Generate code for function header
[2] Generate beginning of program
[3] Generate return and end of function

What does this generating code look like?
Where does it belong in the SyntaxAnalyzer?

Project 3
l Sample PL460 program

(define (aFunction)
“Hello world”

)
(define (main)

0
)
(main)

l Corresponding C++ program
l Modifications to generating code in

SyntaxAnalyzer?

Project 3
l Sample PL460 program

(define (aFunction)
“Hello world”

)
(define (main)

(display 0)
(newline)
(display aFunction)
(newline)

)
(main)

l Corresponding C++ program
l Modifications to generating code in

SyntaxAnalyzer?

Project 3
l Blue grammar rules
l Table of corresponding code snippets
l Questions?

Expressions and Assignment
Statements (Chapter 7)
l Arithmetic Expressions
l Overloaded Operators
l Type Conversions
l Relational and Boolean Expressions
l Short-Circuit Evaluation
l Assignment Statements
l Mixed-Mode Assignment

Arithmetic Expressions
l Operators
l Operator Evaluation Order

l Precedence
l Commutativity
l Associativity
l Parenthesis
l Conditional Expressions
l Operand Evaluation Order

l Side Effects

#include <iostream>
using namespace std;

int main ()
{
 int a = 5, b = 7, c = 3;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "1. 5 + 7 * 3 - 3 * 5 % 7 --> ";
 cout << (5 + 7 * 3 - 3 * 5 % 7) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "2. 5 +- 7 * 3 - 3 % 5 *- 7 --> ";
 cout << (5 +- 7 * 3 - 3 % 5 *- 7) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "3. a + b * c - c * a % b --> ";
 cout << (a + b * c - c * a % b) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "4. a++ + b * c - c * a % ++b --> ";
 cout << (a++ + b * c - c * a % ++b) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "5. a += b * c - c * a % b --> ";
 cout << (a += b * c - c * a % b) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "6. a + (b * c) - c * (a % b) --> ";
 cout << (a + (b * c) - c * (a % b)) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 cout << "7. a + (b *= c) - c * (a %= b) --> ";
 cout << (a + (b *= c) - c * (a %= b)) << endl;
 cout << "a = " << a << "; b = " << b << "; c = " << c << endl;
 return 0;
}

What is the output of this program?

#include <iostream>
using namespace std;

int g = 10;
void reset (int & b) int funky (int p, int & q)
{ {
 b = 7; p = 2 * p;
 g = 10; q = 1 + q;
} return (g = p + q);
 }
int main ()
{
 int a = 5, b = 7;
 cout << "a = " << a << "; b = " << b << "; g = " << g << endl;
 cout << "1. funky (a, b) --> ";
 cout << (funky (a, b)) << endl;
 cout << "a = " << a << "; b = " << b << "; g = " << g << endl;
 reset (b);
 cout << "2. funky (a, b) + 2 * funky (a, b) --> ";
 cout << (funky (a, b) + 2 * funky (a, b)) << endl;
 cout << "a = " << a << "; b = " << b << "; g = " << g << endl;
 reset (b);
 cout << "3. 2 * funky (a, b) + funky (a, b) --> ";
 cout << (2 * funky (a, b) + funky (a, b)) << endl;
 cout << "a = " << a << "; b = " << b << "; g = " << g << endl;
 return 0;
}

What is the output of this program?

Output . . . Why?
a = 5; b = 7; g = 10
1. funky (a, b) --> 18
a = 5; b = 8; g = 18
2. funky (a, b) + 2 * funky (a, b) --> 56
a = 5; b = 9; g = 19
3. 2 * funky (a, b) + funky (a, b) --> 55
a = 5; b = 9; g = 19

Overloaded Operators – Ex 5
l money operator + (const money & M) const;
l money operator += (const money & M);
l money operator - (const money & M) const;
l money operator -= (const money & M);
l money operator * (const double & F) const;
l friend money operator * (const double & Factor, const money & M);
l money operator *= (const double & Factor);
l money operator / (const double & Divisor) const;
l money operator /= (const double & Divisor);
l money operator % (const int & Divisor) const;
l money operator %= (const int & Divisor);
l money operator ++ (); // Pre increment
l money operator ++ (int); // Post increment
l money operator -- (); // Pre decrement
l money operator -- (int); // Post decrement

l bool operator == (const money & M) const;
l bool operator != (const money & M) const;
l bool operator < (const money & M) const;
l bool operator <= (const money & M) const;
l bool operator > (const money & M) const;
l bool operator >= (const money & M) const;

Overloaded Operators – Ex 5
l friend istream & >> (istream & ins, money & M);

l friend ostream & << (ostream & outs, const money & M);

Overloaded Operators – Ex 5
l How do these differ?

l money operator * (const double & F) const;

l friend money operator * (const double & Factor, const money & M);

l money operator *= (const double & Factor);

Overloaded Operators – Ex 5

l How do these differ?
l money operator ++ (); // Pre increment

l money operator ++ (int); // Post increment

l money operator -- (); // Pre decrement

l money operator -- (int); // Post decrement

Relational and Boolean
Expressions
l if (a == b)
l cout << a == b << endl;
l Counting applications

Short-Circuit Evaluation
l if (a == b and c < d)
l if (a == b or c < d)
l if (function1 (a, b) and function2 (b, c))
l if (function1 (a, b) or function2 (b, c))
l Side effects
l if (letter == ‘a’ || ‘e’ || ‘i’ || ‘o’ || ‘u’)
l C++ vs Java

Assignment Statements
l As independent statements
l As part of an expression
l Return value

Type Conversions
l int a;
l float b;
l char c;
l Float (a);
l (unsigned short) c;

Mixed-Mode Assignment
l Coalescing / coercion
l In FORTRAN, C, and C++, any numeric value can be

assigned to any numeric scalar variable; whatever
conversion is necessary is done

l In Pascal, integers can be assigned to reals, but reals
cannot be assigned to integers (the programmer must
specify whether the conversion from real to integer is
truncated or rounded)

l In Java, only widening assignment coercions are done
l In Ada, there is no assignment coercion

