
Sonoma State University
Computer Science Department
CS460 – Fall 2023 – Watts

Semester Project - Part 2 (aka Project 2)
(Due: Thursday, 16 November 2023, 6:59 am and Thursday, 23 November 2023, 6:59 am)

For this project you are to write a recursive descent parser that performs syntactical analysis on
PL460 source code using the grammar distributed in class and posted on our website.

Extra Credit Write a meaningful PL460 program that uses all 93 rules in our grammar.
Date Due: Thursday, 16 November 2023, 6:59 am
To turn in: A file called lastnameP2.pl460. Submit your .tgz file by copying it to
~tiawatts/cs460drop.

Specifications

The grammar can be found at: http://watts.cs. sonoma.edu/cs460f23/ProjectGrammar.pdf

Starter files for the assignment can be found in the folder Project2Framework in the course
pickup directory. LexicalAnalyzer will generate the tokens identified in the table below.

The functions developed for this parser should be in a .cpp file. Necessary classes, types and
prototypes should be in an associated .h file. The files SyntacticalAnalyzer.cpp and
SyntacticalAnalyzer.h in Project2Framework should be used as a starting point for this project.

Input: A source code file. The file name should be accepted as a command line argument. The
file name extension must be '.pl460'.

Output: A listing of the original source code with lexical and syntactical error messages (written
to a listing file (filename - .pl460 + .lst)). A Project 2 file (filename - .pl460 + .p2) containing a
list of the rules applied. Each time a rule is used, a line of the form “Using Rule #” should be
written to the .p2 file. Sample files are in the P2Tests folder in the course pickup folder. A
debugging file (filename - .pl460 + .dbg) containing (perhaps) a list of terminal symbols, non-
terminal symbols, rules, and functions encountered while parsing the program (and other useful
debugging information). Sample input and output for PL460 programs P2-1.pl460 and P2-
2.pl460 are illustrated below.

Your makefile must create an executable called “P2.out”.

Your main function must be in a file called Project2.cpp.

Date Due: Thursday, 23 November 2023, 6:59 am
To turn in: A tarred and zipped directory containing source files (headers and implementations)
and a makefile. Your directory should be called lastnameP2 and your tarred and zipped file
should be called lastnameP2.tgz. Submit your .tgz file by copying it to ~tiawatts/cs460drop.

The following tokens are generated by LexicalAnalyzer.o

Identifier α(α|#|_)* IDENT_T
Numeric Literals (+|-|λ) (#+ | #*.#+ | #+.#* | #+/#+) NUMLIT_T
String Literals " . . . " STRLIT_T
Logical Literals #t TRUE_T
 #f FALSE_T
Key words (cad*r) | (cd+r) | (cd*ar) | list LISTOP1_T
 cons | append LISTOP2_T
 if IF_T
 cond COND_T
 else ELSE_T
 display DISPLAY_T
 newline NEWLINE_T
 and AND_T
 or OR_T
 not NOT_T
 define DEFINE_T
 let LET_T
 read READ_T
Predicates number? NUMBERP_T
 list? LISTP_T
 zero? ZEROP_T
 null? NULLP_T
 eof? EOFP_T
Arithmetic + PLUS_T
 - MINUS_T
 / DIV_T
 * MULT_T
 modulo MODULO_T
 round ROUND_T
Logical/Relational = EQUALTO_T
 > GT_T
 < LT_T
 > = GTE_T
 <= LTE_T
Other (LPAREN_T
) RPAREN_T
 ‘ SQUOTE_T
 ERROR_T
 EOF_T

::::::::::::::
P2-1.pl460
::::::::::::::
(define (main)
 (display "Hello World\n")
)

(main)

::::::::::::::
P2-1.lst
::::::::::::::
Input file: P2-1.pl460
 1: (define (main)
 2: (display "Hello World\n")
 3:)
 4:
 5: (main)
0 errors found in input file

::::::::::::::
P2-1.p1
::::::::::::::
 LPAREN_T (
 DEFINE_T define
 LPAREN_T (
 IDENT_T main
 RPAREN_T)
 LPAREN_T (
 DISPLAY_T display
 STRLIT_T "Hello World\n"
 RPAREN_T)
 RPAREN_T)
 LPAREN_T (
 IDENT_T main
 RPAREN_T)
 EOF_T

::::::::::::::
P2-1.p2
::::::::::::::
Using Rule 1
Using Rule 4
Using Rule 20
Using Rule 9
Using Rule 55
Using Rule 7
Using Rule 11
Using Rule 6
Using Rule 3
Using Rule 6

::::::::::::::
P2-2.pl460
::::::::::::::
(define (square n)
 (* n n)
)

(square 45)
::::::::::::::
P2-2.lst
::::::::::::::
Input file: P2-2.pl460
 1: (define (square n)
 2: (* n n)
 3:)
 4:
 5: (square 45)
0 errors found in input file
::::::::::::::
P2-2.p1
::::::::::::::
 LPAREN_T (
 DEFINE_T define
 LPAREN_T (
 IDENT_T square
 IDENT_T n
 RPAREN_T)
 LPAREN_T (
 MULT_T *
 IDENT_T n
 IDENT_T n
 RPAREN_T)
 RPAREN_T)
 LPAREN_T (
 IDENT_T square
 NUMLIT_T 45
 RPAREN_T)
 EOF_T
::::::::::::::
P2-2.p2
::::::::::::::
Using Rule 1
Using Rule 4
Using Rule 19
Using Rule 20
Using Rule 9
Using Rule 46
Using Rule 5
Using Rule 8
Using Rule 5
Using Rule 8
Using Rule 6
Using Rule 6
Using Rule 3
Using Rule 5
Using Rule 7
Using Rule 10
Using Rule 6

